
Abstract

Over the past decades, to deal with the rapidly growing data volumes in this big

data era, data-parallel clusters were designed to process the data-parallel jobs, each

of which runs on many machines in parallel by dividing the entire job into individual

tasks that process different pieces of data. Many large organizations such as Facebook,

Google and Yahoo! have deployed their data-parallel clusters to process thousands of

jobs every day.

Many previous studies show that current production clusters process increasingly

diverse jobs with various job characteristics (e.g., input data size, shuffle data size,

and output data size). First, previous works have shown that there are a large

number of shuffle-heavy jobs in current production workloads, which may result in

network bottleneck in the clusters and hence greatly degrades the performance of the

clusters. Second, the small jobs (i.e., jobs with small data to process) often dominate

the workloads in production. However, current architectures and schedulers of data-

parallel clusters were originally built to process data-intensive jobs that have large

input datasets. The mismatch between the actual workloads and design objectives

results in poor performance of the jobs in the clusters.

The key contribution of this dissertation is designing job schedulers in different

architectures of data-parallel clusters to handle the diverse workloads. First, we design

a Network-Aware job Scheduler (NAS) for data-parallel frameworks in traditional

datacenter networks that can schedule tasks carefully to avoid and reduce the network

congestion caused by the large amount of shuffle-heavy jobs.

Second, to build high-capacity, low-latency datacenter networks, researchers have

proposed hybrid electrical/optical datacenter network (Hybrid-DCN) architectures,

which augment the traditional electrical-packet switching (EPS) datacenter network

with an on-demand rack-to-rack network using the optical circuit switch (OCS). In



order to utilize Hybrid-DCN efficiently, job schedulers for data-parallel frameworks

must keep pace to meet the needs of such hybrid networks. Thus, we design a job

scheduler called JobPacker that can efficiently exploit OCS in Hybrid-DCN to improve

the job performance by finding the optimal tradeoff between the parallelism and traffic

aggregation.

Third, recent works advocate hybrid scale-up/scale-out clusters (in short Hybrid

clusters) to handle the workloads that consist of a majority of jobs with small input

data sizes and a small number of jobs with large input data sizes. However, pre-

vious works did not solve the challenges for job placement and data placement in

designing such a Hybrid cluster. We design the job placement and data placement

strategies in Hybrid cluster to address the challenges, which can significantly improve

the performance of workloads with a large amount of small jobs.

Finally, we demonstrate through trace-driven simulation and real cluster evalua-

tion that our proposed schedulers improve the performance of diverse workloads in

the data-parallel clusters in terms of throughput and job completion time.
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Chapter 1

Introduction

Data-parallelism is a form of parallelization that focuses on distributing the data

across different nodes, which operate on the data in parallel. To deal with the rapidly

growing data volumes in this big data era, data-parallel clusters were designed to

process the data-parallel jobs, each of which runs on many machines in parallel by

dividing the entire job into individual tasks that process different pieces of data.

Many large organizations such as Facebook, Google and Yahoo! have deployed

their data-parallel clusters (e.g., MapReduce [47], Cosmos [27], and Spark [17]) to

process thousands of jobs every day. In the data-parallel cluster of an organization,

multiple users from different groups in the organization usually share the cluster and

run a mix of long batch jobs and short interactive queries. The sharing feature enables

the statistical multiplexing, which leads to lower cost since each group does not need

to build its private cluster.

For example, in Facebook MapReduce cluster [174], event logs from Facebook’s

website are imported into a Hadoop cluster every hour. A variety of jobs (e.g.,

analyzing usage patterns, detecting spam, data mining and ad optimization) are

run periodically to analyze the event logs from Facebook’s website. In addition to

“production” jobs that run periodically, there are some experimental jobs, such as

1



machine learning computations and ad-hoc queries, whose running times range from

several hours to 1-2 minutes.

With the exponential increase of the volumes of computation and data, improving

the performance of data-parallel clusters (i.e., throughput of the cluster and average

job completion time) gets increasingly important [174]. Researchers have been explor-

ing different methods to improve the cluster performance, such as job scheduling [26,

62, 75, 86, 176], data placement [13, 15, 61, 109, 111, 112], intermediate data shuffling

[42, 44, 155, 166] and improving small job performance [60].

1.1 Problems Due to Job Diversity

Although data-parallel frameworks and their schedulers were originally designed to

process data-intensive jobs with large input datasets, many previous studies [3, 18,

32, 60, 94, 137] show that current production clusters process increasingly diverse jobs

with various job characteristics (e.g., input data size, shuffle data size, and output

data size). The mismatch between the actual workloads and design objectives results

in poor performance of the jobs in the clusters.

First, previous work has shown that 60% and 20% of the jobs are shuffle-heavy jobs

(i.e., jobs with a large shuffle data size) on the Yahoo! [32] and Facebook MapReduce

clusters [172], respectively. A large amount of shuffle-heavy jobs in the workloads may

result in network bottleneck in the clusters, which greatly degrades the performance

of the clusters. This is because the shuffle phase in MapReduce is an all-Map-to-all-

Reduce communication phase and the transfer of shuffle data is the dominant source

of network traffic [3]. In addition, while there is full bisection bandwidth within a

rack, traditional datacenter networks commonly use network topologies with link

oversubscription ranging from 3:1 to 40:1 from the racks to the core [3, 47, 77, 172],

as shown in Figure 1.1. What is worse is that more than 50% of the cross-rack

2



Oversubscription

5

Top-of-Rack 
(ToR) switch

Core switch

16 Servers = 16 * 10Gbps =160Gbps

40Gbps, oversubscription = 4:1

Figure 1.1: Traditional datacenter network architecture.

bandwidth may be used for background data transfer [34, 94]. These two reasons

further reduce the available cross-rack bandwidth for the shuffle-heavy jobs.

Second, the small jobs (i.e., jobs with small data to process) often dominate the

workloads in production, although the data-parallel frameworks were originally built

for large jobs (i.e., jobs with large data to process). For example, the production work-

loads in Microsoft and Yahoo! clusters have median job input size under 14GB [18,

60, 137] and 90% of jobs on a Facebook cluster have input size under 100GB [13].

Many previous studies [18, 60, 137] show that the small jobs in the production clus-

ters often have poor response time, since these frameworks were built without having

short jobs in mind. For example, one of their key design goals was scalability with

respect to the job and cluster sizes. Obviously, large clusters of cheap servers are the

most cost-effective way to process exabytes, petabytes, or multi-terabytes of data [18].

However, is it really the best option for workloads where the majority are small jobs?
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1.2 Proposed Scheduling Techniques

Accordingly, we worked on three research thrusts to improve the performance of

diverse workloads in data-parallel clusters. While we present our designs and results

in the MapReduce setting [47] – one of the most widely used data-parallel frameworks,

the designs and results generalize to any data flow based cluster computing system,

like Dryad [90] and Spark [17].

1.2.1 Network-aware Scheduler in Traditional Datacenter Net-

work Architecture

In this research thrust, we aim to design a network-aware scheduler for the data-

parallel frameworks in conventional datacenter network architecture.

Although there are many shuffle-heavy jobs in current commercial production

clusters, many schedulers [26, 62, 71, 91, 172] only focus on achieving fairness and

increasing data locality in the map stage. For example, Capacity [26], Fair [62] and

Dominant Resource Fairness [71] schedulers aim to achieve the fairness of resource

allocation (e.g., CPU, memory, storage and bandwidth) among users or jobs. Delay

scheduler in [91, 172] aims to improve the data locality (i.e., the node running a task

has its required data) in the map stage of MapReduce.

ShuffleWatcher [3] has been proposed to reduce cross-rack shuffle data traffic and

avoid network congestion. When a job is submitted, ShuffleWatcher pre-computes a

placement of its map and reduce tasks leading to the minimum network traffic. Then

ShuffleWatcher schedules the tasks of the job based on the pre-computed placement.

When the cross-rack network is congested, ShuffleWatcher delays scheduling reduce

tasks (and hence the shuffle data transfer) by assigning map tasks instead, and assigns

a job’s reduce tasks to a rack based on the amount of shuffle data on that rack.
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Although ShuffleWatcher reduces the cross-rack traffic of the reduce tasks, it increases

the cross-rack traffic to read map input data, as mentioned in [94].

Therefore, it is important to consider the shuffle phase in task scheduling to avoid

and reduce network congestion without compromising cluster performance. Specifi-

cally, we identify three main challenges in designing such a scheduler below.

1. Balancing network traffic temporally. Previous study [120] shows that

the cross-rack network bandwidth is not always fully utilized at all time. This

motivates us to design a scheduler to balance the network traffic temporally,

so that the cross-rack network is less likely to be congested. To balance the

network traffic temporally, we can constrain the maximum total shuffle data

generated in the cluster at a time. Thus, the first challenge is how to place

tasks to constrain the maximum total shuffle data generated in the cluster at a

time.

2. Enforcing data locality for the shuffle data. Shuffle-heavy jobs generally

transfer a large amount of shuffle data across racks, resulting in high require-

ment of cross-rack network bandwidth. Many jobs executed simultaneously

exacerbate the pressure of the need of network bandwidth. Unlike the CPU,

memory, and disk resources that are easy to scale-up by deploying more hard-

ware, network bandwidth is hard to scale-up with current hardware technolo-

gy [3]. Current datacenter network architectures [5] typically provide cross-rack

bandwidth and within-rack bandwidth per node with a ratio of 5:1 to 20:1 [47,

78, 172]. Poor scheduling of reduce tasks on different nodes may lead to cross-

rack network congestion, which degrades the performance. Thus, it is crucial to

place the tasks to enforce certain data locality for the shuffle data, i.e., reducing

the amount of shuffle traffic that is transferred cross-rack.

3. Reducing cross-rack network congestion. The overlap between the map
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and shuffle phases improves the performance. ShuffleWatcher sacrifices such

overlap to reduce network congestion [3], which degrades the performance.

Therefore, it is important to reduce congestion without sacrificing the intra-

job concurrency to achieve better performance.

In this research thrust, we design a network-aware scheduler (NAS) that incorpo-

rates three mechanisms to handle these three challenges respectively. The three mech-

anisms are map task scheduling (MTS), congestion-avoidance reduce task scheduling

(CA-RTS) and congestion-reduction reduce task scheduling (CR-RTS). NAS consid-

ers the shuffle traffic in both the map and reduce task scheduling.

1. Map task scheduling (MTS). MTS places the map tasks while constraining

the size of the shuffle data transmitted from each node at a time under a certain

threshold. More importantly, through constraining the shuffle data size on

each node, MTS balances the network traffic temporally since it constrains the

maximum total shuffle data being processed in the cluster, which avoids the

cross-rack network congestion. Specifically, based on the predicted shuffle data

size [160] of each map task, MTS calculates the total shuffle data size of all the

map tasks in every node. Once a worker node requests for a map task, MTS

checks the user list in the top-down manner until finding a map task with an

output data size that can keep the updated total shuffle data size in the node no

higher than the threshold, while still providing a certain degree of data-locality

and fairness.

2. Congestion-avoidance reduce task scheduling (CA-RTS). CA-RTS aims

to avoid the cross-rack network congestion while increasing cluster performance.

It adaptively adjusts the map completion threshold of jobs based on their shuffle

data sizes. Also, for each job, it distributes its reduce tasks based on the
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distribution of its shuffle data among the racks in order to minimize cross-rack

traffic.

3. Congestion-reduction reduce task scheduling (CR-RTS). Usually, both

shuffle-heavy and shuffle-light jobs (i.e., jobs that generate very little shuffle data

size) run at the same time. Considering that the shuffle-light jobs consume

negligible cross-rack network bandwidth [3], rather than delaying the shuffle

phase of all jobs as in ShuffleWatcher, CR-RTS does not delay the shuffle phases

of shuffle-light jobs. As a result, CR-RTS reduces network congestion while

reducing the sacrifices of overlap between the shuffle and map phases.

We implemented NAS in Hadoop on a cluster. Our trace-driven simulation and

real cluster experiment demonstrate the superior performance of NAS on improv-

ing the throughput (up to 62%), reducing the average job completion time (up to

44%) and reducing the cross-rack traffic (up to 40%) compared with state-of-the-art

schedulers.

1.2.2 Job Scheduler in Hybrid Electrical/Optical Datacenter

Network Architecture

In this research thrust, we aim to design a job scheduler for the data-parallel frame-

works in a recently proposed datacenter network architecture.

To supply sufficient network bandwidth for data transfer, we can increase net-

work capacity. However, high-speed network interface cards (NICs) incur high cap-

ital expenditures (CapEx) and high operating expenditures (OpEx) due to power

consumption. An answer to the problem of high CapEx and OpEx for high-speed

networking lies in optical circuit switch (OCS), which can provide a bandwidth up to

100Gbps [63, 162]. OCS can connect any of its input port to any of its output port,
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but one input port can be connected to only one output port at a time. To change

the input-to-output connection, one needs to reconfigure the OCS connection which

results in a reconfiguration delay on the order of µs-to-ms. This reconfiguration delay

is significantly higher than the latency of packet switching that is in the order of ns.

Therefore, OCS can only be added as a complement to traditional electrical packet

switch (EPS), but not a replacement.

Recently, several studies propose hybrid electrical/optical datacenter network (in

short Hybrid-DCN ) designs [30, 63, 134, 162], which augment the EPS datacenter

network with an on-demand rack-to-rack network using the OCS. The top-of-rack

(ToR) switches are connected with a core EPS and an OCS, forming packet-switched

network and circuit-switched network, respectively. Typically, in Hybrid-DCN, each

rack connects to one input port and one output port, which means that one rack

can send data via OCS to only one other rack at a time. Due to such limitation, in

Hybrid-DCN, OCS is used only for large data transfers (e.g., 1.125GB) between racks

so that the overhead of µs-to-ms reconfiguration delay is negligible.

Current state-of-the-art schedulers (e.g., Fair [62] and Corral [94]) in data-parallel

frameworks fail to leverage OCS to accelerate the data transfer, since they either

spread the tasks of a job (e.g., map and reduce tasks in MapReduce) among racks

which generates many small flows or schedule the tasks of a job to avoid using cross-

rack traffic which cannot exploit OCS to accelerate the data transfer. Thus, new job

schedulers for data-parallel frameworks are required to meet the need of Hybrid-DCN.

To take full advantage of Hybrid-DCN, we could aggregate the data to be trans-

ferred by placing the tasks of a job in only a few racks. However, it may sacrifice

the basic principle of data-parallel frameworks – parallelism (i.e., the tasks of a job

running concurrently), since each rack may have a limited number of containers avail-

able at a time. If a rack does not have sufficient available resources to run all the

assigned tasks concurrently, it increases the latency of the job (i.e., the duration from
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the start of a job until its completion). Hence, there is a tradeoff between parallelism

and traffic aggregation. In this work, we propose a job scheduler called JobPacker

that aims to efficiently leverage OCS in Hybrid-DCN to improve job performance by

balancing such tradeoff.

JobPacker attempts to aggregate the shuffle data transfers of a job in order to

use OCS effectively. JobPacker consists of an offline scheduler (to schedule recurring

jobs in the next unit period of time) and an online scheduler. The offline scheduler

consists of a job profiler and a job manager.

• The job profiler exploits the fact that most jobs in a cluster are often recurring

and have predictable job characteristics [2, 66, 94] to find all feasible (map-

width, reduce-width) pairs (defined as the number of racks to run the map and

reduce tasks) of each shuffle-heavy recurring job that can aggregate sufficient

shuffle data to use OCS effectively while achieving sufficient parallelism.

• Then, the job manager finds the best (map-width, reduce-width) pair with

the shortest completion time, and also generates a global schedule including

which racks to run each recurring job and the sequence to run the map/reduce

tasks of recurring jobs in each rack that yields the best performance (i.e., high

throughput for batch jobs and short completion time for online jobs). The

job manager also has a new sorting method to prioritize the recurring jobs

in scheduling to prevent high resource contention while fully utilizing cluster

resources.

• Based on the determined schedule, when jobs and their datasets are submitted,

the online scheduler places input datasets and schedules the recurring jobs to

racks accordingly. It schedules non-recurring (i.e., ad-hoc) jobs to the resources

not assigned to the recurring jobs. As the recurring jobs can finish earlier by
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more efficiently utilizing OCS, it leaves more computing resources and network

bandwidth to ad-hoc jobs to complete earlier [94].

We have evaluated JobPacker using large-scale simulation and small-scale emu-

lation on GENI based on a Facebook trace [32]. The results show that JobPacker

reduces the makespan of a batch of jobs (i.e., the time to finish all the jobs) up to

49% and the median job completion time up to 43%, compared to the state-of-the-art

schedulers in Hybrid-DCN.

1.2.3 Job Placement and Data Placement in Hybrid Scale-

up/out Cluster

In this research thrust, we aim to design job placement and data placement strategies

for hybrid scale-up/out cluster to handle the diverse workloads for high performance.

Conventionally, the data-parallel clusters consist of a large number of scale-out

machines. Recent studies [18, 105, 110] advocate to explore hybrid scale-up and scale-

out heterogeneous clusters (in short Hybrid clusters) to handle current workloads,

since previous studies [32, 60] show that a large amount of jobs (e.g., more than 80%)

in current workloads only process small data size and have diverse job characteristics

(e.g., shuffle data size). Here, scale-up is vertical scaling, which means adding more

resources to the nodes of a system, typically the processors and RAM, and scale-out

is horizontal scaling, which refers to adding more nodes with few processors and RAM

to a system. Appuswamy et al. [18] evaluated the jobs with different characteristics

on scale-up and scale-out machines and found that scale-up is significantly better in

some cases, than scale-out. Hence, we are motivated to design a Hybrid cluster to

handle the diverse workloads in the clusters for high performance.

Hybrid cluster is essentially a heterogeneous cluster. There have been plenty

of efforts [4, 68, 105, 173] focusing on improving the performance in heterogeneous

10



clusters. However, since these proposals do not consider the workloads with diverse

job characteristics and do not take advantage of this feature, they are not suitable

for the Hybrid cluster, which is designed to process such workloads. For example,

since we intentionally introduce scale-up machines to deal with job diversity in Hybrid

cluster, we expect the jobs that favor scale-up to run on scale-up machines, which is

not considered in previous work [4, 68, 105, 173]. Li et al. [110] identified the challenges

of job and data placement to design a Hybrid cluster and configured it with a remote

file system to solve the challenges. However, the proposed solution with remote file

system causes a large amount of remote data transfer.

In this work, we focus on the design of Hybrid cluster with conventional local

file system (e.g., HDFS), where some scale-out machines are replaced by scale-up

machines that have the same cost with the scale-out machines. In other words, we

aim to design a Hybrid cluster to improve the performance of big data analytics with

the same monetary cost, namely a more cost-effective cluster. First, we identify the

key challenges in designing Hybrid clusters to improve the performance of big data

analytic clusters. There are two main challenges – job placement challenges (J.1, J.2,

and J.3) and data placement challenges (D.1 and D.2).

• J.1 A proper job placement strategy is essential for the Hybrid cluster. The

jobs with different job characteristics may benefit differently from scale-up and

scale-out machines. Therefore, we need to adaptively place the jobs to scale-up

or scale-out machines based on their job characteristics to achieve the most

benefits for the jobs.

• J.2 The job placement strategy should consider the load balancing. After we

schedule the jobs to scale-up or scale-out machines based on their job charac-

teristics, severe load imbalance may occur on different types of machines. For

example, suppose a large amount of small jobs are submitted to Hybrid cluster
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simultaneously, while there are not many large jobs. If we still run the jobs

on different machines based on their job characteristics, it leads to overload on

the scale-up machines, while under-utilizing on the scale-out machines. Hence,

the job placement strategy needs to adaptively schedule small jobs to the other

type of machines to avoid overload.

• J.3 It seems that it is straightforward to address J.2 challenge by moving tasks

from scale-up (scale-out) to scale-out (scale-up) when one type of machines are

under-utilized. However, this mechanism is not sufficient since the scale-up

and scale-out machines have different capability of computing for the tasks,

which is a typical problem in heterogeneous clusters. The different computing

speed results in significant imbalance progress of tasks within a job, that is, fast

machines complete the tasks faster and need to wait for the slow machines to

complete the tasks of the same job. This leads to a non-negligible delay and

significantly degrades the performance of the job [4, 173].

• D.1 Data locality is an essential factor for high performance [172]. Since we

adaptively place a job to scale-up or scale-out machines based on its job char-

acteristics, in order to maintain data locality, we need to accordingly place the

data of every job to the machines that the job is supposed to run on.

• D.2 We cannot simply place the data of scale-up jobs on scale-up machines

and the data of scale-out jobs on scale-out machines. This is because the jobs

may be adjusted between scale-up and scale-out machines for load balancing

according to J.2 challenge. If the adjustment of some jobs occurs, the data

locality cannot maintain, which degrades the performance of Hybrid.

Then, we propose corresponding job placement and data placement strategies that

can be easily implemented to handle the challenges.
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• Job placement strategy In order to achieve the best performance on Hybrid

cluster, we use a Support Vector Machine (SVM) model to classify the submitted

jobs into two groups, scale-up jobs (i.e., small jobs) and scale-out jobs (i.e., large

jobs), based on the characteristics of the jobs. We use the term scale-up jobs

to refer to the jobs that are better to run on scale-up machines, and the term

scale-out jobs to refer to the jobs that are better to run on scale-out machines.

The scale-up jobs are scheduled on scale-up machines, while the scale-out jobs

are scheduled on scale-out machines.

This policy ensures performance improvements for both small and large jobs.

The small jobs can benefit from the use of scale-up machines, while the large jobs

obtain benefits because placing the small jobs on scale-up machines significantly

mitigates the resource contention between large and small jobs on scale-out

machines.

Further, to balance the loads between scale-up and scale-out machines, we pro-

pose a job stealing strategy, which adaptively steals scale-up jobs to run on

scale-out machines when the scale-out machines are under-utilized.

• Data placement strategy In order to solve the data placement challenges,

we propose a replication-based placement strategy. We place the replicas of

each data block on both scale-up and scale-out machines. Specifically, for a

data block, the first and second replicas are placed on the scale-out machines,

while the third replica of the data block is placed on the scale-up machines.

The proposed data placement strategy can maintain high data locality for both

scale-up and scale-out jobs. Furthermore, when the job stealing strategy is used,

it does not decrease the data locality of the stolen jobs.

Finally, we implement a Hybrid cluster with the above two strategies, and evalu-

ate its performance through real cluster run and large-scale trace-driven simulation.
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Using the workload derived from Facebook [32], we show that with our proposed s-

trategies, the Hybrid cluster can reduce the makespan of the workload up to 40% and

the median job completion time up to 60%, compared to traditional scale-out clusters

with state-of-the-art schedulers.

1.3 Contributions

My thesis statement is that we can improve the performance of current

state-of-the-art schedulers (e.g., Fair and Delay schedulers in Hadoop) by

• balancing the network traffic temporally and enforcing the data locality for

shuffle data,

• aggregating the data transfers to efficiently exploit optical circuit switch in

hybrid electrical/optical datacenter network while still guaranteeing parallelism

of the jobs,

• and adaptively scheduling a job to either scale-up machines or scale-out ma-

chines that benefit the job the most in hybrid scale-up/out cluster.

The main dissertation consists of three proposed schedulers to support the the-

sis. First, we discuss a network-aware scheduler that can shape the network traffic

temporally and reduce network congestion in the traditional datacenter network. We

evaluate the proposed scheduler through real cluster experiment and trace-driven

simulation.

Second, we design a job scheduler that aims to take full advantage of OCS in

Hybrid-DCN by finding the optimal tradeoff between traffic aggregation and paral-

lelism. We evaluate the proposed scheduler with Hybrid-DCN through trace-driven

simulation and emulation.
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Third, we present job placement and data placement strategies in hybrid scale-

up/out cluster to adaptively select scale-up or scale-out machines based on the job

characteristics to achieve the most benefits for the jobs. We demonstrate the effec-

tiveness of our proposed strategies in hybrid scale-up/out cluster through real cluster

experiment and trace-driven simulation.

Together, the experiments demonstrate that the performance of current state-

of-the-art schedulers (e.g., Fair and Delay schedulers) in data-parallel clusters with

diverse workloads is improved by the proposed schedulers.

The primary contributions of the dissertation are summarized as follows.

• Network-aware scheduler in traditional datacenter network. We identi-

fy the challenges in designing a job scheduler that can shape the network traffic

temporally and reduce cross-rack network congestion. First, we need to place

the tasks to constrain the maximum total shuffle data generated in the cluster

at a time so that the network traffic is balanced temporally. Second, we need to

place the reduce tasks to enforce certain data locality for the shuffle data, which

reduces the cross-rack shuffle traffic and avoids cross-rack network congestion.

To handle these challenges, we design a Network-Aware job Scheduler (NAS)

that consists of three main mechanisms: i) map task scheduling (MTS), i-

i) congestion-avoidance reduce task scheduling (CA-RTS) and iii) congestion-

reduction reduce task scheduling (CR-RTS). NAS considers the shuffle phase in

both the map and reduce task scheduling. MTS constrains the size of shuffle

data on each node when scheduling the map tasks. Through this mechanism,

MTS constrains the maximum total shuffle data being processed in the cluster

at a time, which helps avoid the cross-rack network congestion. When the net-

work is not congested, CA-RTS is used to distribute the reduce tasks for each

job based on the distribution of its shuffle data among the racks in order to
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minimize cross-rack traffic. When the network is congested, CR-RTS is used to

schedule reduce tasks that generate negligible shuffle traffic to reduce the con-

gestion. Our trace-driven simulation and real cluster experiment demonstrate

the superior performance of NAS on improving the throughput, reducing the

average job completion time, and reducing the cross-rack traffic, compared with

state-of-the-art schedulers.

• Job scheduler in hybrid electrical/optical datacenter network. We

identify the key challenge of designing a job scheduler that can efficiently utilize

OCS in Hybrid-DCN is exploring the tradeoff between the parallelism and traffic

aggregation. We design JobPacker, a job scheduler for data-parallel frameworks

in Hybrid-DCN that aims to take full advantage of the OCS to improve job

performance by exploring such tradeoff.

Since many jobs in production are recurring with predictable characteristics,

JobPacker uses an offline scheduler to explore the tradeoff between parallelism

and traffic aggregation, and generates a global schedule including which rack-

s to run each recurring job and the sequence to run the map/reduce tasks of

recurring jobs in each rack that yields the best performance. Then, an online

scheduler schedules recurring jobs based on the generated offline schedule, and

schedules non-recurring jobs to the idle resources that are not assigned to recur-

ring jobs. Trace-driven simulation and emulation show that JobPacker reduces

the makespan and the median completion time in Hybrid-DCN, compared to

the state-of-the-art schedulers.

• Job placement and data placement in hybrid scale-up/out cluster. We

identify the job placement and data placement challenges of using hybrid scale-

up/out cluster to improve the performance of workloads with a large amount

of small jobs. For job placement, we need to adaptively place the jobs to scale-
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up or scale-out machines based on their job characteristics to achieve the most

benefits for the jobs. In addition, after we schedule the jobs to scale-up or scale-

out machines based on their job characteristics, severe load imbalance may occur

on different types of machines. For data placement, since we adaptively place a

job to scale-up or scale-out machines based on its job characteristics, in order

to maintain data locality, we need to accordingly place the data of every job to

the machines that the job is supposed to run on.

We design job placement and data placement strategies in hybrid scale-up/out

cluster to address these challenges. We use a Support Vector Machine (SVM)

model to classify the submitted jobs into two groups, scale-up jobs (i.e., small

jobs) and scale-out jobs (i.e., large jobs), based on the characteristics of the

jobs. Further, to balance the loads between scale-up and scale-out machines,

we propose a job stealing strategy, which adaptively steals scale-up jobs to run

on scale-out machines when the scale-out machines are under-utilized. To han-

dle data placement challenges, we propose a replication-based data placement

strategy that places the replicas based on the types of the jobs. Real cluster

experiment and trace-driven simulation show that with our proposed strate-

gies, Hybrid cluster can reduce the makespan and median job completion time,

compared to traditional scale-out cluster with state-of-the-art schedulers.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 first provides the

introduction of MapReduce programming model and the Hadoop framework. Then,

it presents the system model in this dissertation.

Chapters 3, 4, 5 propose three job schedulers in different architectures of data-

parallel clusters. Chapters 3 and 4 both focus on designing job schedulers to address
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the network bottleneck problems caused by a large amount of shuffle-heavy jobs.

However, the former one outlines a network-aware scheduler in traditional datacenter

network in detail, while the latter one describes a job scheduler that can efficiently

exploit OCS in Hybrid-DCN. Chapter 5 illustrates the challenges in designing a hybrid

scale-up/out cluster and presents corresponding job scheduling and data placement

strategies to handle these challenges.

Chapter 6 describes the framework of our built simulator used to evaluate our

proposed job schedulers. Chapter 7 provides an overview of the related work. Finally,

Chapter 8 concludes this dissertation with future remarks.
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Chapter 2

Background and System Model

In this dissertation, we use MapReduce [47] as the example use case and Hadoop [84]

as its implementation. While we present our designs and results in the MapRe-

duce setting, they generalize to any data flow based cluster computing system, like

Dryad [90] and Spark [17]. The locality and network issues we address are inherent

in large-scale data-parallel computing.

In this chapter, we first provide a brief introduction of MapReduce [47] program-

ming model and then describe the Hadoop architecture, which is a popular open-

source implementation of MapReduce (Section 2.1).

2.1 MapReduce Programming Model

MapReduce [47] is a popular computing model for parallel data processing on large-

scale datasets. A job in MapReduce consists of the map and reduce stages, each of

which consists of multiple map and reduce tasks. When each of these tasks has all

its input data ready, it is assigned to a container on a node to execute, as shown in

Figure 2.1. Each containers contains certain amount of CPU and memory resource

[94]. Each map task processes one input data block and generates the intermediate
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Figure 2.1: Map, shuffle and reduce phases in MapReduce [47].

key-value pairs (called map output data or shuffle data or reduce input data). Each

reduce task consists of two phases: shuffle and reduce phases. In the shuffle phase,

all data with the same key from different map tasks is assigned to the same reduce

task, and the reduce task fetches the data through HTTP from the corresponding

map tasks. Finally, each reduce task processes the input data and generates the final

output.

2.2 Hadoop Overview

Hadoop [84] is a popular open-source implementation of MapReduce [47]. Yet Another

Resource Negotiator (YARN) infrastructure is the resource management framework

in Hadoop that provides the resources for the application running. YARN consists of

one central ResourceManager (RM), a per-application ApplicationMaster (AM) and a

per-node NodeManager (NM) in a cluster, as shown in Figure 2.2. As a master of the

cluster, the RM primarily works together with AM and NM, and it knows the resource

information (e.g., location and amount of resource) of the cluster. The RM has a

Scheduler component, which determines how many and where to allocate the resource
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Figure 2.2: YARN framework.

containers to the applications. Each container incorporates certain amount of CPU

and memory resources and each task in MapReduce is assigned a container. Currently,

the Scheduler is pluggable to YARN. For example, Fair scheduler [62] and Capacity

scheduler [26] are the most common schedulers. Each application in Hadoop has an

associated AM, which is responsible for negotiating appropriate resource containers

from RM and monitoring the progress of the application. The NM is YARN’s per-

node agent, and takes care of a compute node in a Hadoop cluster. The NM keeps

track of the updates of its containers and periodically sends the update information

(namely heartbeat) to the RM.

In Hadoop, when 5% (called map completion threshold) of the map tasks for a job

have completed, the reduce tasks of the job can be scheduled to run on nodes. Only

after a reduce task is scheduled, the shuffle phase can start. The reduce phase of the

reduce tasks cannot start until all the map tasks of the job complete and the shuffle

phase has transferred all the map output data needed by the reduce task to process.

Overlapping the map and shuffle phases (i.e., intra-job concurrency) improves the

performance in terms of throughput and execution time. Usually, the nodes that

process reduce tasks (i.e., reducers) for a job are different from the nodes that process
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the map tasks (i.e., mappers) for the same job. As a result, almost all the shuffle

data is transmitted to different nodes, generating a large amount of cross-node and

even cross-rack network traffic. Part of the shuffle data may even be transmitted to

different racks, generating a large amount of cross-rack network traffic.

Hadoop uses Hadoop Distributed File System (HDFS) as its primary distributed

data storage system. Data is broken down into smaller blocks and stored in HDFS.

To ensure fault tolerance, HDFS uses replication strategy. By default, the number of

replicas is three for each block in HDFS. Conventionally, HDFS puts one replica in

one node in one rack, another replica in a node in a different (remote) rack, and the

third replica in a different node in the same remote rack. In other words, the three

replicas are placed in two racks; one replica in a rack and two replicas in another

rack.

2.3 System Model and Scheduling Problems

In this section, we define the model and present the terminology in this dissertation.

We consider a job consists of a certain number of tasks. Several previous studies [2,

50, 66, 73, 74, 94, 97] show that cluster workloads contain a large number of recurring

jobs, whose job characteristics, including input/shuffle/output data sizes, job arrival

time, the number of map/reduce tasks, and the map/reduce task duration, can be

predicted with a small error (e.g., 6.5% [94]). Thus, for a recurring job, we assume

that all the job characteristics above are known priori. For a non-recurring job, we

assume that the input data size and the number of map/reduce tasks of the job are

known priori.

We consider that a cluster consists of nodes (servers) that process tasks and

schedulers that assign tasks to nodes. As a common assumption for data-parallel

clusters in previous studies [3, 48, 94, 128], we assume that each node can run a fixed
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number of containers. Each container has certain amount of resources (e.g., CPU

and memory) and can run one task at a time. In other words, each task is scheduled

to one container on a node to run.

Recall that the job scheduling in Hadoop is performed by the ResourceManager,

which manages the nodes in the cluster. Every few seconds (e.g., 1 second), the

NodeManager on every node send a heartbeat to the ResourceManager, including

the number of available containers on the node. The job schedulers assign tasks

to the nodes while respecting the capacity constraints (i.e., the number of available

containers) and task dependencies. The objectives of the schedulers often include

maximizing throughput (or minimizing makespan, the time to finish a batch of jobs)

and minimizing average job completion time (the time from when a job is submitted

to the cluster until the last task of the job completes).

Regardless of the scheduling objectives, offline scheduling or online scheduling,

many previous studies [73, 74, 76, 94, 128] indicated that no polynomial time approx-

imation scheme is possible in scheduling the tasks in data-parallel clusters. Under

the limitation of computational complexity, the job schedulers deployed in practice

do not attempt to pack tasks. All known proposals rely on heuristics to design the

job schedulers.
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Chapter 3

Network-aware Scheduler in

Traditional Datacenter Network

Architecture

Carefully placing the map/reduce tasks can reduce cross-rack traffic and avoid cross-

rack congestion. However, many schedulers [26, 62, 71, 91, 172] only focus on the

scheduling of map stage. For example, Capacity [26], Fair [62] and Dominant Resource

Fairness [71] aim to achieve the fairness of resource allocation (e.g., CPU, memory,

storage and bandwidth) among users or jobs in the map stage. ShuffleWatcher [3]

has proposed to assign the map and reduce tasks of a job onto a few racks to reduce

cross-rack shuffle data traffic and avoid network congestion. Although ShuffleWatcher

reduces the cross-rack traffic of the reduce tasks, it increases the cross-rack traffic

to read map input data. Therefore, in this chapter, we propose a network-aware

scheduler that handles the challenges of network problem of data-parallel frameworks

– constraining the cross-node network load to shape the network traffic temporally,

reducing cross-rack traffic and cross-rack congestion.

The remainder of this chapter is organized as follows. Section 3.1 identifies the
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challenges in the design of network-aware scheduler. We describe the main design of

our scheduler in Section 3.2 and present our experiment evaluation in Section 3.3.

Section 3.4 concludes this chapter with remarks on our future work.

3.1 Background

Several efforts [26, 62, 71] aim to achieve fairness among jobs or users for the map

tasks. Fair scheduler [62] is most widely used in real clusters to achieve fairness

among jobs, i.e., each job occupies approximately the same amount of resources.

Dominant Resource Fairness scheduler [71] achieves a max-min fairness for multiple

resources (e.g., CPU, memory and I/O). Delay scheduler [172] reduces network traffic

by solving the tradeoff between fairness and map input data locality. However, the

above schedulers mainly focus on the scheduling of map tasks but do not consider the

shuffle phase, which is the major network traffic source in MapReduce clusters [3].

We focus on reducing the shuffle traffic and avoiding cross-rack network congestion to

improve the cluster performance within certain data locality and fairness constraints.

A few previous studies consider the scheduling of reduce tasks to improve the clus-

ter performance. Guo et al. [83] presented ishuffle that actively pushes map output

data to nodes and flexibly schedules reduce tasks considering workload balance. Cou-

pling scheduler [147] gradually launches reduce tasks based on the progress of map

tasks rather than using a greedy algorithm to launch reduce tasks like Fair scheduler

[62]. However, the above works do not reduce the cross-rack network traffic or avoid

cross-rack network congestion. Tan et al. [148] formulated the reduce task schedul-

ing that minimizes the shuffle data transfer cost to a classic stochastic assignment

problem to find out the optimal reduce task placement. Jiang et al. [96] designed

Symbiosis, which identifies and corrects unbalanced utilization of multiple resources

during runtime to improve the resource utilization such as computing and network
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resources. Our work not only reduces the cross-rack traffic to avoid congestion but

also handles cross-rack network congestion, which greatly improves the performance

of MapReduce clusters.

ShuffleWatcher [3] reduces the cross-rack congestion by delaying all the reduce

tasks and tries to place the map tasks into one or a fewer racks. However, it sacrifices

the intra-job concurrency to achieve higher shuffle locality. Moreover, their algorithm

increases the cross-rack traffic introduced by reading map input data. NAS improves

both data-locality and intra-job concurrency with its three mechanisms.

Therefore, it is important to consider the shuffle phase in task scheduling to avoid

and reduce network congestion without compromising cluster performance. Specifi-

cally, we identify three main challenges in designing such a scheduler below.

1. Balancing network traffic temporally. Previous study [120] shows that

the cross-rack network bandwidth is not always fully utilized at all time. This

motivates us to design a scheduler to balance the network traffic temporally,

so that the cross-rack network is less likely to be congested. To balance the

network traffic temporally, we can constrain the maximum total shuffle data

generated in the cluster at a time. Thus, the first challenge is how to place

tasks to constrain the maximum total shuffle data generated in the cluster at a

time.

2. Enforcing data locality for the shuffle data. Shuffle-heavy jobs generally

transfer a large amount of shuffle data across racks, resulting in high require-

ment of cross-rack network bandwidth. Many jobs executed simultaneously

exacerbate the pressure of the need of network bandwidth. Unlike the CPU,

memory, and disk resources that are easy to scale-up by deploying more hard-

ware, network bandwidth is hard to scale-up with current hardware technolo-

gy [3]. Current datacenter network architectures [5] typically provide cross-rack
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bandwidth and within-rack bandwidth per node with a ratio of 5:1 to 20:1 [47,

78, 172]. Poor scheduling of reduce tasks on different nodes may lead to cross-

rack network congestion, which degrades the performance. Thus, it is crucial to

place the tasks to enforce certain data locality for the shuffle data, i.e., reducing

the amount of shuffle traffic that is transferred cross-rack.

3. Reducing cross-rack network congestion. The overlap between the map

and shuffle phases improves the performance. ShuffleWatcher sacrifices such

overlap to avoid network congestion [3], which degrades the performance. There-

fore, it is important to reduce congestion while reducing the sacrifices of intra-

job concurrency to achieve better performance.

3.2 Design of NAS

In this section, we explain the methodology of our proposed scheduler. It consists

of three main mechanisms to handle the challenges: map task placement (MTS),

reduce task placement (CR-RTS) and network-aware shuffle delaying (CA-RTS). All

the mechanisms use the shuffle data size predictor [160]. NAS considers the shuffle

phase in both the map and reduce task scheduling.

3.2.1 Shuffle Data Size Predictor

Our mechanisms need to learn the shuffle data size beforehand to schedule the map

and reduce tasks and distinguish shuffle-heavy and shuffle-light jobs. We utilize a

predictor [160] to estimate the map output data size of each map task to be shuffled.

The predictor leverages the fact that the map tasks from the same job have similar

map output/input ratios. The map output/input ratio of a job is obtained from the

completed map tasks for the same job. Then, the predictor extrapolates the map
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output data size of a map task in the job by:

MapOutput = (map output/input ratio) ∗MapInput (3.1)

where MapOutput and MapInput are the output and input data size of the map task,

respectively.

It is worth mentioning that the shuffle data size can be provided by the users,

if it is known in advance, or obtained from previous runs. Many previous studies

[7, 66, 94] indicate that most of the jobs in production clusters are recurring, whose

characteristics can be estimated with a low error. For a newly submitted job without

knowing its map output/input ratio, the map output/input ratio of the job can be

initialized to 1 [3]. We call this kind of jobs as unpredicted jobs, otherwise, predicted

jobs. Once a map task of the job is completed, this task’s map output/input ratio

can be calculated by MapOutput/MapInput. Then, the ratio of this job is updated

by calculating the average of all the completed map tasks.

Based on the predicted shuffle data size of a job, we can classify the jobs to shuffle-

heavy jobs, shuffle-medium jobs and shuffle-light jobs. For example, in the experiment

in Section 3.3, we define shuffle-light, shuffle-medium and shuffle-heavy jobs as the

jobs with shuffle data size smaller than 1MB, in the range of (1-100)MB and larger

than 100MB, respectively.

3.2.2 Overview of NAS

We briefly introduce the overall procedure of the NAS scheduler, as shown in Algo-

rithm 1. When a node requests for a map task, MTS is invoked to schedule the map

task (lines 1-2). The scheduler keeps track of the network conditions of the cluster.

When a node requests for a reduce task, the network condition is checked (lines 4

and 6). If the network is not congested (lines 4-5), CR-RTS is called to schedule the
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reduce task. Otherwise (lines 6-7), CR-RTS is called to schedule the reduce task.

Algorithm 1 Pseudocode of NAS scheduler, which is called when a worker node
requests for a task.

Require: Current network condition of the rack of this worker node NetState
1: if request for a map task then
2: call MTS
3: else if request for a reduce task then
4: if NetState < CogestionThreshold then
5: call CA-RTS
6: else
7: call CR-RTS
8: end if
9: end if

3.2.3 Map Task Scheduling (MTS)

MTS aims to balance the network load temporally and hence reduce the cross-rack

congestion. Specifically, it constrains the shuffle data size generated on each node

under its pre-determined threshold. We will explain how to determine the threshold

later.

We exploit the algorithm in Delay scheduler [172] to sort the user, which attempts

to achieve high data locality while maintaining fairness among users in resource shar-

ing. Accordingly, MTS creates a user list based on fairness, where the users with

less resource have higher priority to be allocated with resources. MTS first predicts

map output data sizes of all the map tasks running on a worker node, and calculates

its available space for map output based on the threshold. Next, from the user list,

MTS finds a map task that has output size no larger than the available space (namely

shuffle-qualified map task) and also meets the data-locality requirement (i.e., the data

block of a task is stored on the same node where the task runs). MTS skips a user if

the user does not have a qualified map task.

To achieve fairness between users to a certain degree, as in Delay scheduler [172],
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MTS sets a maximum skip count Dm. Once a user has been skipped for Dm times, the

user’s task can be scheduled without satisfying the data-locality or shuffle-qualified

requirement. Skipping users will not greatly deviate the fairness requirement. This

is because in a large cluster, thousands of tasks run in the cluster, and the containers

that enable the tasks of the skipped user to meet the shuffle-qualified and data-locality

requirements will be freed in a few seconds [172]. We will present this analysis later.

Algorithm 2 shows the pseudocode of the MTS mechanism. First, MTS searches

the tasks of the first user in the user list and tries to find a map task that meets

the shuffle-qualified and data-locality requirements. If the user has such a map task,

MTS selects this map task (lines 3-4). If the user has several such map tasks, the map

task for an unpredicted job has higher priority so that the job can become predicted

earlier later on. Then, the map task whose map output data size is the closest to

the available space is preferred so that the available shuffle data space can be fully

utilized. Once the user’s task is scheduled, its map skip counter is set back to 0.

When MTS cannot find such a map task from the first user, if the map skip counter

equals Dm, MTS identifies a shuffle-qualified map task without the data-locality in

the first user (lines 7-12); otherwise, MTS skips the first user, increases its map skip

counter by 1 (lines 17-18), and checks the second user in the same manner.

Without data-locality, we give a higher priority to the map tasks from small-

input jobs than large-input jobs considering that large-input jobs have more input

data blocks throughout the cluster and hence have a higher possibility to launch a

local map task later on. Accordingly, we classify the jobs to different categories based

on the input data size (first priority) and whether a job is a predicted job (second

priority). Take two levels as an example, we categorize the jobs into four categories to

select map tasks from as shown in lines 11-14. Note that the categorization of small-

input and large-input jobs can be different from clusters to clusters. The cluster

operators can define their own thresholds (the same as many other parameters in
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Algorithm 2 Pseudocode for MTS.

Require: Initialize skip count of the ith user Dm
i = 0

maximum number of skips Dm

1: Calculate the available map output data size on the worker node.
2: for user i in the user list do
3: if the user has data-local and shuffle-qualified map task then
4: launch this map task on this node, set Dm

i = 0
5: else
6: if Dm

i == Dm then
7: if we can find shuffle-qualified map tasks of this user then
8: launch a map task in the following order:
9: (1) map task from small-input unpredicted job

10: (2) map task from small-input predicted job
11: (3) map task from large-input unpredicted job
12: (4) map task from large-input predicted job
13: else
14: launch a map task in the following order:
15: (1) data-local map task
16: (2) map task with the smallest map output data size
17: end if
18: else
19: Dm

i ++
20: end if
21: end if
22: end for
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current Hadoop) to categorize the jobs. For example, in the experiment in Section

3.3, we classify the jobs with input data size smaller and larger than 10MB as small-

input jobs and large-input jobs, respectively. In each category, we further evaluate

the data transfer cost of each map task to determine the priority to select a map task.

The data transfer cost is calculated by: MapCost = γ ∗MapInputSize, where γ is

equal to 0 if the map input data is on the local node (data locality); equal to 1 if the

map input data is on the local rack (rack locality); and equal to 2 if the map input

data is on a remote rack (rack remote). If there are several map tasks with the same

MapCost, we select the map task whose map output data size is the closest to the

available space in order to fully utilize the available shuffle data space.

When there is no map task that is shuffle-qualified from all the users (lines 15-18),

if there exist data-locality map tasks, MTS selects the one with the smallest shuffle

data size since it exceeds TrafficThreshold the least; otherwise, MTS just selects the

map task with the smallest shuffle data size among all map tasks (lines 17-19) in

order to reduce map output data.

Node traffic threshold determination. Now, we explain how the threshold

for the shuffle data size of each node is determined, denoted by TrafficThreshold.

When all the containers in the cluster are assigned and freed one time, it is called one

wave of map (reduce) tasks. All submitted map (reduce) tasks cannot be scheduled

to the clusters simultaneously and hence they are scheduled through several contin-

uous waves. The shuffle data transfers of the tasks in one wave are conducted in

approximately the same time. We set a threshold on each node for two purposes.

• First, it avoids scheduling many map tasks that generate large shuffle data on

each node, which balances the cross-node network load.

• Second, it avoids scheduling many map tasks that generate large shuffle data

simultaneously in the cluster (i.e., in one wave), which potentially constrains
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the network traffic generated in the cluster at a time and hence avoids cross-rack

network congestion.

We assume that {J1, J2, ..., Jn} are the n submitted jobs currently in the cluster.

Job Ji has Si shuffle data size and contains Ki map tasks. We assume that in the

cluster, there are N nodes, each of which has m containers and hence there are Nm

containers in total. The map tasks generate
∑n

i=1 Si shuffle data size in total in the

cluster. Then,
∑n

i=1Ki map tasks are processed in
∑n

i=1Ki/Nm waves. We divide

the total shuffle data of all the jobs evenly into several waves. The average size of

shuffle data generated in each wave is:

∑n
i=1 Si∑n

i=1Ki/Nm
=

Nm
∑n

i=1 Si∑n
i=1Ki

(3.2)

Keeping approximately the same amount of shuffle data in each wave in the cluster

prevents scheduling many map tasks with large shuffle data sizes at the same time

and hence avoids cross-rack congestion.

To achieve a balanced cross-node traffic, we set the threshold for the shuffle data

size on each node TrafficThreshold as the average size of shuffle data generated on

each node in each wave:

Nm
∑n

i=1 Si

N
∑n

i=1Ki
=

m
∑n

i=1 Si∑n
i=1Ki

(3.3)

TrafficThreshold is updated periodically. The cluster operators can change Traf-

ficThreshold dynamically (the same as many other parameters in current Hadoop)

that serves their own clusters more accurately. For example, in some clusters, there

are fewer shuffle-heavy jobs and then TrafficThreshold can be set to a smaller value.

Analysis of the map skip counter strategy. We analyze the probability of
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launching a map task with the data-locality and shuffle-qualified constraints. When a

worker node requests for a map task, we assume that user i is the first one in the user

list and it has mi submitted jobs denoted by {J i
1, J

i
2, ..., J

i
mi
}. Let pJ be the fraction

of nodes that have job J ’s required data and qJ be the probability that the map tasks

of job J are shuffle-qualified. Note that qJ is easy to adjust by the cluster operators

by setting an appropriate TrafficThreshold. Then, the probability that user i cannot

launch a map task that meets the data-locality and shuffle-qualified requirements after

skipping Dm times is
∏mi

k=1(1 − pJi
k
qJi

k
)D

m
. This probability decreases exponentially

as Dm decreases. For example, assume that a user has 3 jobs, 10% of nodes have the

jobs’ input data (i.e., pj = 0.1) and the probability that the map tasks of the jobs are

shuffle-qualified is qJ = 0.5. Then, this user has a 78.5% probability to launch a map

task within 10 skips and a 99.8% probability to launch a map task within 40 skips. In

Facebook cluster [172], 27 containers are freed every second on average, which means

that there is 99.8% probability to take less than 2 seconds for the user to launch a

data-locality and shuffle-qualified map task.

3.2.4 Congestion-avoidance Reduce Task Scheduling (CA-

RTS)

In this section, we introduce the CA-RTS mechanism, which aims to avoid traffic con-

gestion and reduce the cross-rack network traffic in reduce task scheduling. CA-RTS

incorporates a cross-rack traffic reduction method and an adaptive map completion

threshold method.

We define a threshold of desired upper bound of network utilization Cogestion-

Threshold (e.g., 90% of cross-rack bandwidth is used). As in [3], we utilize some

network monitor tools (e.g., NetHogs) to monitor the cross-rack network load in the

cluster. When a worker node requests for the next reduce task to process, if Coges-
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tionThreshold is not yet reached, it means that the cross-rack network is not congested

and CA-RTS is used for reduce task scheduling. Otherwise, CR-RTS (Section 3.2.5)

is used for reduce task scheduling.

Cross-rack traffic reduction method. It is indicated in [14] that for a job

that has evenly distributed map output data on several racks, the best placement of

reduce tasks to avoid cross-rack congestion on one rack is to evenly distribute the

reduce tasks among these racks. Therefore, for each job, keeping the distribution

of its reduce tasks the same as the distribution of its shuffle data among the racks

can minimize cross-rack traffic and hence avoid cross-rack congestion because placing

more reduce tasks of a job on a rack may congest its downlink, while placing fewer

reduce tasks of this job on a rack may congest its uplink. That it, for a job, if

x% (called MapOuputPortion) of its total map output data is generated in rack Ri,

scheduling x% of its total reduce tasks (denoted by TotalReduceNum) in rack Ri can

minimize the cross-track network traffic for shuffle data transfer of the job. We define:

ReduceNum = TotalReduceNum ∗MapOutputPortion. (3.4)

Algorithm 3 Pseudocode for CA-RTS.

1: Select a user from the user list based on fairness.
2: Launch reduce task from a job that satisfies map completion threshold in the

following order (a job with delayed or MapProgressRate = 100% has higher
priority in the same category):

3: (1) Shuffle-heavy jobs whose ReduceNum is not reached,
4: (2) Shuffle-medium jobs whose ReduceNum is not reached
5: (3) Shuffle-light jobs whose ReduceNum not reached
6: (4) Shuffle-light jobs whose ReduceNum is reached
7: (5) Shuffle-medium jobs whose ReduceNum is reached
8: (6) Shuffle-heavy jobs whose ReduceNum is reached

When CA-RTS handles a reduce task request from a worker node on a rack Ri, it

first predicts the shuffle data size (ShuffleSize) (as introduced in Section 3.2.1), and
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then calculates MapOuputPortion and ReduceNum of each job on rack Ri.

Algorithm 3 shows the pseudocode of CA-RTS. From the first user in the user

list (line 1), CA-RTS selects the reduce tasks from the jobs that run fewer reduce

tasks than ReduceNum on rack Ri (lines 3-5). In addition, CA-RTS also considers i)

whether it is delayed in CR-RTS, ii) whether the percentage of completed map tasks

of a job, MapProgressRate=100%, and iii) ShuffleSize to achieve high performance.

CA-RTS gives a higher priority to the reduce tasks marked as “delayed” by CR-

RTS in order not to delay some reduce tasks for too long. Next, CA-RTS gives a

higher priority to the reduce tasks of the jobs with fully completed map tasks (i.e.,

MapProgressRate=100%) in order to start them as early as possible. Finally, CA-

RTS prefers the reduce tasks from the jobs with larger shuffle data sizes in order to

fully utilize available bandwidth when the cross-rack network is not congested.

If CA-RTS cannot find the reduce tasks from the jobs that have the number of

reduce tasks less than ReduceNum on rack Ri, CA-RTS then gives a higher priority

to the reduce tasks from the jobs with smaller shuffle data size because such tasks

cause a smaller amount of cross-rack traffic (lines 6-8). As a result, CA-RTS reduces

the cross-rack traffic generated from shuffle data transfer.

Adaptive map completion threshold method. In MapReduce, when the

percentage of completed map tasks of a job reaches the map completion threshold

(e.g., 5%), the reduce tasks of the job can be scheduled, and only after all shuffle data

of the job is transferred, the reduce tasks can start running. Transferring a smaller

amount of shuffle data takes a shorter time period and vice versa.

As shown in Figure 3.1(a), for a shuffle-light job, the shuffle data is transferred in

a short time and early scheduling of reduce tasks (the top scheduling in Figure 3.1(a))

may cause two problems. First, it may increase the network bandwidth competition

with shuffle-heavy jobs though its delayed transfer won’t affect the job running perfor-

mance. Second, it occupies the computing resource even no shuffle data is transferred
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Figure 3.1: Demonstration of shuffle-light and shuffle-heavy jobs.

since the transfer is done in a short time. On the other hand, a shuffle-heavy job takes

a long time for the shuffle data to transfer. A later data transferring start time may

increase their execution time and reduces the overlap between the map and shuffle

phases (the top scheduling in Figure 3.1(b)).

Therefore, the data transfer and reduce task scheduling for shuffle-light jobs can

start later, while the data transfer for shuffle-heavy jobs can start earlier, as shown in

the bottom scheduling manners in Figures 3.1(a) and 3.1(b). Based on this rationale,

we propose our adaptive map completion threshold method based on shuffle data size

to avoid traffic congestion and fully utilize resource. That is, if a job has a larger

shuffle data size, it has a smaller threshold and vice versa. Assume the maximum and

minimum shuffle data size of the jobs in the cluster is Smax and Smin, respectively. We

set the smallest and the largest threshold to Tmin and Tmax, which are the thresholds

for the jobs with the largest and the smallest shuffle data size, respectively. If a job

has a shuffle data size of S, its threshold equals:

Threshold =
Tmin − Tmax

Smax − Smin

∗ S +
TmaxSmax − TminSmin

Smax − Smin

. (3.5)

As a result, jobs with a smaller shuffle data size have higher thresholds and vice

versa. This prevents shuffle-light jobs from competing bandwidth with shuffle-heavy
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and shuffle-medium jobs while enabling them to finish shuffle data transfer when map

tasks complete. Also, it enables to more fully utilize the resources by releasing the

occupied but idle containers of reduce tasks from shuffle-light jobs.

3.2.5 Congestion-reduction Reduce Task Scheduling (CR-RTS)

In this section, we introduce the CR-RTS mechanism, which aims to mitigate the

cross-rack network congestion caused by shuffle data transfer.

If CogestionThreshold is reached, the bandwidth is highly utilized. Delaying

scheduling all reduce tasks to reduce the congestion sacrifices intra-job concurrency

and compromises performance. To reduce the network congestion while maintaining

the overlap between the map and shuffle phases, CR-RTS schedules reduce tasks and

map tasks that will not generate a large amount of shuffle data traffic. Specifical-

ly, CR-RTS has three strategies. First, it selects the shuffle-light jobs to schedule

and delays scheduling the reduce tasks of shuffle-heavy and shuffle-medium jobs until

the network is not congested. Second, CR-RTS stops scheduling the map tasks of

shuffle-heavy and shuffle-medium jobs. Then, the map completion threshold cannot

be reached and the shuffle data of these jobs will not be transferred.

Algorithm 4 Pseudocode for CR-RTS.

Require: Initialize skip count of the ith user Dr
i = 0

maximum number of skips Dr

1: for user i in the user list do
2: if Dr

i < Dr then
3: if this user has shuffle-light jobs then
4: Select a reduce task from shuffle-light jobs, set Dr

i = 0
5: else
6: Dr

i ++ and skip this user
7: end if
8: else
9: Select a reduce task from any jobs

10: end if
11: end for
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Algorithm 4 shows the pseudocode of CR-RTS. Again, there is a sorted user list

created based on Delay scheduler. CR-RTS checks the users in the user list in the

top-down manner. From the first user, CR-RTS tries to find a reduce task of shuffle-

light job to schedule and delays the reduce tasks of shuffle-medium and shuffle-heavy

jobs (lines 1-8). If the first user does not have a reduce task from shuffle-light jobs,

CR-RTS searches the next user until it finds a matched reduce task. The reduce skip

counter is handled in the same manner as the map skip counter. For the reduce tasks

of shuffle-heavy and shuffle-medium jobs, each reduce task has a delay tag. CR-RTS

changes the delay flag to “delayed”. These delayed tasks will have a higher priority to

be scheduled when the network is not congested as explained in Section 3.2.4. Further,

CR-RTS notifies MTS not to schedule shuffle-heavy and shuffle-medium map tasks

until the network is not congested.

Analysis of the reduce skip counter strategy. We assume that user i has

mi submitted jobs. Let fJ denote the probability that job J is a shuffle-light job.

Therefore, the probability that user i does not have a shuffle-light job is (1 − fJ)mi .

Thus, the probability that top u users in the user list do not have a shuffle-light

job is (1 − fJ)miu. Take the Facebook trace [32] as an example. According to our

definition of shuffle-light jobs in Section 3.3, we find that 68.7% of the jobs (fJ=0.687)

are shuffle-light jobs. Assume that each user has only one job (mi = 1). Therefore,

skipping 3 users (u = 3) has a 97% probability of launching a shuffle-light job and

skipping 5 users (u = 5) has a 99.7% probability of launching a shuffle-light job.

When the cross-track network is congested, there should be a large amount of users

and jobs in the cluster. Hence, it is very likely to launch a shuffle-light job. Then,

CR-RTS needs to skip only a few users or even no users if a user has several jobs,

which maintains a high fairness.
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3.2.6 Complexity of NAS

Similar to current schedulers [62, 172], NAS has very simple computations such as

finding shuffle-qualified and data-local map tasks, which are in O(n) complexity (n

is the number of jobs in the list). These computations are quite simple and generate

negligible overheads. Also, the monitor is a low-overhead monitor. Therefore, the

NAS has at least the same scalability as the state-of-the-art schedulers [62, 172].

3.3 Performance Evaluation

In this section, we evaluate NAS in comparison with other schedulers through trace-

driven simulation. We also implemented our scheduler in Hadoop on a real cluster

for performance evaluation.

3.3.1 Facebook Trace and Experimental Environment

Trace-driven simulation. We built an event-based simulator (details in Chapter 6)

as in [48, 94, 128] to evaluate the performance. We used the Facebook day-long work-

load FB-2010 trace [32] in our simulation. The trace provides detailed information

of 24442 jobs. We considered the small-input jobs and large-input jobs as the jobs

with input data size smaller and larger than 10MB, respectively. We considered the

shuffle-light jobs, shuffle-medium jobs and shuffle-heavy jobs as the jobs with shuffle

data size smaller than 1MB, in the range of (1-100)MB, and larger than 100MB,

respectively. Figure 3.2 shows the percentage of jobs of each type in the workload.

In the simulation, we set the number of users to 200 and the number of nodes to

600 in the cluster, which are consistent with the Facebook cluster reported in [32,

172]. The job arrival time strictly follows the trace. Since there is no user information

in the trace, we assigned each job randomly to a user. In the 600-node cluster,
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Fig. 2: Demonstration of shuffle-light and shuffle-heavy jobs.
the cross-rack traffic generated from shuffle data transfer while
improving the performance.

D. Congestion-reduction Reduce Task Scheduling (CR-RTS)

In this section, we introduce the CR-RTS mechanism,
which aims to handle the cross-rack network congestion caused
by shuffle data transfer. Before a reduce task can start, the
shuffle data required by the reduce task must be transferred
to the node of the reduce task. The transferring of shuffle
data sometimes requires a large amount of network bandwidth,
which may lead to cross-rack network congestion and hence
degrades the performance of all the running jobs.

We define a threshold of desired upper bound of network
utilization CogestionThreshold (e.g., 90% of full bisection
bandwidth is used). As in [5], we utilize some network monitor
tools (e.g., NetStat or NetHogs) to monitor the cross-rack
network load in the cluster. When a worker node completes a
reduce task and requests for the next reduce task to process,
first the monitor returns the utilization of the cross-rack net-
work to JobTracker. If CogestionThreshold is not yet reached,
it means that the cross-rack network is not congested and CA-
RTS is used directly for reduce task scheduling. Otherwise,
CR-RTS is employed for reduce task scheduling.

If CogestionThreshold is reached, the full bisection band-
width is highly utilized. Then, if we still schedule the reduce
tasks of shuffle-heavy jobs, the network condition becomes
even more congested, which leads to slow shuffle data transfer
and degrades the performance. Though ShuffleWatcher delays
scheduling all reduce tasks to reduce the congestion, it sac-
rifices intra-job concurrency and compromises performance.
Recall that when the map completion threshold (e.g., 5%)
of the map tasks of a job complete, the reduce tasks of the
job can be scheduled. Once a reduce task is scheduled to a
node, the transferring of its shuffle data can start. Thus, to
reduce the network congestion, CR-RTS can schedule reduce
tasks and map tasks that will not generate a large amount
of shuffle data traffic. This way, the overlap between the map
and shuffle phases can be maintained and the performance will
not be compromised. Note that shuffle-heavy jobs generate a
large amount of shuffle data while shuffle-light jobs generate
a negligible amount of shuffle data [5]. Accordingly, CR-
RTS has three strategies. First, it schedules the shuffle-light
jobs in the available reduce slots and delays scheduling the
reduce tasks of shuffle-heavy and shuffle-medium jobs until the
network is not congested. Second, CR-RTS stops scheduling
the map tasks of shuffle-heavy and shuffle-medium jobs. Then,
the map completion threshold cannot be reached and the
shuffle data of the shuffle-heavy and shuffle-medium jobs will
not be transferred.

Below, we present the details of CR-RTS. Again, a sorted
user list is created based on the Delay Scheduler. CR-RTS
checks the users in the user list in the top-down manner. From

the first user, CR-RTS tries to schedule a reduce task of a
shuffle-light job on the reduce slot and delays the reduce tasks
of shuffle-medium and shuffle-heavy jobs. If the first user does
not have a shuffle-light reduce task, CR-RTS skips the first
user, increments the user’s reduce skip counter and moves to
the next user until it finds a matched reduce task. The reduce
skip counter is handled in the same manner as the map skip
counter for fairness. For the reduce tasks of shuffle-heavy and
shuffle-medium jobs, each reduce task has a delay tag. CR-
RTS changes the delay flag to the “delayed”. These delayed
tasks will have a higher priority to be scheduled when the
network is not congested anymore as indicated in Section III-C.
Further, CR-RTS notifies MTS not to schedule shuffle-heavy
and shuffle-medium map tasks. When the network is not
congested anymore, CR-RTS notifies MTS to schedule the
delayed shuffle-heavy and shuffle-medium map tasks.

Analysis of the reduce skip counter strategy. We assume
that user i has mi submitted jobs. Let fJ denote the probability
that job J is a shuffle-light job. Therefore, the probability that
user i does not have a shuffle-light job is (1 − fJ)mi . Thus,
the probability that top u users in the user list do not have a
shuffle-light job is (1−fJ)miu. Take the Facebook trace [9] as
an example. According to out definition of shuffle-light jobs,
68.7% of the jobs (fJ=0.687) are shuffle-light jobs. Assume
that each user has only one job (mi = 1). Therefore, skipping
3 users (u = 3) has a 97% probability of launching a shuffle-
light job and skipping 5 users (u = 5) has a 99.7% probability
of launching a shuffle-light job. When the cross-track network
is congested, there should be a large amount of users and jobs
in the cluster. Hence, it is very likely to launch a shuffle-light
job. Then, CR-RTS only needs to skip a few users or even
does not need to skip users if a user has several jobs, which
maintains a high fairness.

IV. PERFORMANCE EVALUATION

In this section, we evaluate NAS in comparison with other
schedulers through trave-driven simulation. We also imple-
mented our scheduler in Hadoop on a real supercomputing
cluster for performance evaluation.

A. Facebook Trace and Experimental Environment

Trace-driven simulation. We used the Facebook day-long
workload FB-2010 trace [9] in our simulation. The trace
provides detailed information of 24442 jobs, including job ID,
job submission arrival time, job input data size, job shuffle
data size, and job output data size. We considered the small-
input jobs and large-input jobs as the jobs with input data
size smaller or larger than 10MB, respectively. We considered
the shuffle-light jobs, shuffle-medium jobs and shuffle-heavy
jobs as the jobs with shuffle data size smaller than 1MB, in
the range of (1-100)MB, and larger than 100MB, respectively.
Table I shows the percentage of jobs of each type in the
workload. We see that there are nearly the same amount of
small-input jobs and large-input jobs in the workload, and the
majority of jobs (i.e., more than 65%) are shuffle-light jobs.

TABLE I: Distribution of each job type.
Job type Percentage

Small-input 50.02%
Large-input 49.98%
Shuffle-light 68.70%

Shuffle-medium 12.58%
Shuffle-heavy 18.82%

6
Figure 3.2: Distribution of each job type in the simulation.

we assume that there are 30 racks, each of which has 20 nodes. Each node has 6

containers [172]. The block size was set to 128MB [172]. The replication factor was

set to 3. In a commercial cluster, it is common that the cross-rack bandwidth for each

node is much lower than the within-rack bandwidth for each node [16, 47, 172]. Like

[3], we set the cross-rack bandwidth to 1Gbps. We set the within-rack bandwidth for

each node to 250Mbps, so that the ratio of within-rack and cross-rack bandwidth for

each node follows 5:1. Typical oversubscription ratio ranges from 5:1 to 20:1 [16, 47,

172] and with a higher oversubscription ratio than the setting, NAS can achieve more

performance improvement than our reported experimental results.

We compared NAS with Fair scheduler (Fair) [62], Delay scheduler (Delay) [172]

and ShuffleWatcher based on the Delay scheduler (SW-delay) [3]. Fair is the default

and the state-of-the-art scheduler for Hadoop. It achieves fairness among jobs, i.e.,

each job occupies approximately the same amount of resources. Delay is built upon

the Fair scheduler and is another default scheduler in Hadoop. It achieves high data

locality of map tasks by delaying the jobs that cannot launch a local map task.

ShuffleWatcher can be based on either Fair or Delay. We simulated ShuffleWatcher

on top of Delay since it achieves the best throughput in [3]. For both ShuffleWatcher

and NAS, we set the network congestion threshold to 80%. We set the maximum map

(reduce) skip count Dm = Dr = 135 and set Tmin = 0.2, Tmax = 0.5. For Fair, Delay

and SW-delay, they do not have the adaptively map completion threshold method,

and their map completion threshold was set to 0.2, i.e., when 20% of the map tasks
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of a job complete, its reduce tasks can be scheduled.

Real cluster experiment. We generated a workload consisting of 200 jobs using

the Facebook workload synthesized execution framework [32] and the distribution of

job types is the same as shown in Figure 3.2. As in [172], the job arrival time of

these 200 jobs follows an exponential distribution with a mean of 14 seconds, which

makes the process of all submissions 45 minutes long. We implemented NAS in

Hadoop and conducted the evaluation on a 40-node cluster in CloudLab [41]. The 40

nodes were organized in 8 racks with interconnection of 1Gbps Ethernet. Each rack

contains 5 nodes and each node has 1Gbps Ethernet interconnect, resulting in a 5:1

oversubscription ratio. The number of containers on each node was set to 16.

In order to implement NAS in Hadoop, we modified the source codes including

ResourceManager, ApplicationMaster, RMAppManager, AMLauncher, and etc. We

compared NAS with Fair, Delay, and SW-delay schedulers. As in [172], rather than

using the maximum skip count Dm and Dr, we set a maximum wait time of 5 seconds,

i.e., a user cannot be skipped more than 5 seconds to launch tasks. Other settings

are the same as the simulation and other configuration parameters of Hadoop are the

same for all the methods.

3.3.2 Real Cluster Results

In this section, we will present the results of 20 runs in the real cluster experiments.

In order to show the results more clearly, we normalize the experimental results by

the results of Fair scheduler.

We first compared the throughput of different schedulers, which is calculated by

the number of jobs (i.e., 24442) divided by the total time to run all the jobs. Figure

3.3(a) shows the normalized throughput of different schedulers in the real cluster

experiment. We see that NAS achieves improvement over Fair, Delay and SW-delay
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(b) Average job completion time.

Figure 3.3: Results of real cluster experiments.

with 62.5%, 47.0% and 30.2% higher throughput.

We then measured the average job completion time of all the jobs, which is calcu-

lated by the sum of job completion time of all the jobs divided by the total number

of jobs. Figure 3.3(b) shows the normalized average job completion time of different

schedulers in the real cluster experiment. We see that the average job completion

time of NAS is 44.6%, 36.1%, and 32.3% shorter than Fair, Delay and SW-delay,

respectively.

SW-delay and NAS outperform the Fair and Delay scheduler because they reduce

the cross-rack shuffle network traffic, which greatly expedites shuffle data transfer.

NAS produces higher throughput and lower average job completion time than SW-

delay. This is because i) NAS balances the shuffle data transfer load on each node,

while SW-delay does not, ii) NAS pro-actively avoids cross-rack congestion by adjust-

ing the map completion threshold for different jobs based on their shuffle data sizes,

and iii) SW-delay sacrifices the map and reduce phase overlap to achieve higher shuffle

locality (i.e., most shuffle data of a reduce task is located on the same rack where this

reduce task is run). When the network is saturated, SW-delay delays all the reduce

tasks including the shuffle-light jobs, while NAS does not delay the shuffle-light jobs,
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Figure 3.4: Cross-rack traffic.

which are the majority of the jobs in the workload (i.e., 60%).

Figure 3.4 shows the normalized cross-rack shuffle data traffic in the real cluster

experiment, which is measured by the total amount of data transferred cross-rack in

the cluster. We see that SW-delay and NAS produce less cross-rack traffic than Fair

and Delay. SW-delay and NAS try to reduce cross-rack shuffle data traffic upon the

cross-rack network congestion while Delay and Fair do not address cross-rack network

congestion caused by shuffle data transfer.

Figure 3.5 shows the total number of occurrences of cross-rack congestions in

the real cluster experiment. We see that NAS and SW-delay generate fewer cross-

rack congestions than Fair and Delay. This is because when the network is close

to saturation, SW-delay delays the scheduling of all reduce tasks and NAS delays

the scheduling of reduce tasks from shuffle-medium and shuffle-heavy jobs to reduce

congestion, while Fair and Delay do not have mechanisms to deal with the network

congestion. This figure indicates the effectiveness of NAS on reducing cross-rack

congestion.

We further evaluate how NAS improves the performance of jobs with various

shuffle data size. Figure 3.6 shows the throughput improvement (i.e., with NAS
without NAS

) for

shuffle-light, shuffle-medium, and shuffle-heavy jobs in the real cluster experiment. We
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Figure 3.5: The number of occurrences of cross-rack congestions.
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Figure 3.6: Throughput improvement for different jobs.

see that in the real cluster experiments, shuffle-light jobs achieve the highest through-

put improvement, followed by shuffle-medium and then shuffle-heavy jobs. Without

NAS, the performance of shuffle-light jobs are severely degraded by shuffle-heavy jobs

when the network is congested, since the shuffle-heavy jobs occupy the container re-

sources and do not release the container resources for a long time. NAS significantly

reduces the network congestion and hence reduces the impact from shuffle-heavy jobs

on shuffle-light jobs, which results in the most throughput improvement for shuffle-

light jobs.

We also investigated how NAS performs as the map completion thresholds Tmin

and Tmax change. Figure 3.7 shows the throughput of NAS for varying Tmin and
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Figure 3.7: Throughput of NAS for varying Tmin and Tmax.

Tmax in the real cluster experiment. For the curve Tmin = 0.2, it means that Tmin

is fixed to 0.2 and Tmax is varied from 0.2 to 0.9. For the curve Tmax = 0.5, Tmax

is fixed to 0.5 and Tmin is varied from 0.1 to 0.5. We normalized the results to

the result when Tmin = 0.2 and Tmax = 0.5. We see that when Tmin/Tmax is too

small or too large, the throughput is decreased. This is because (i) a too small value

of Tmin/Tmax results in an early start of reduce tasks and hence waste of container

resources; and (ii) a too large value of Tmin/Tmax results in a smaller overlap of map

and reduce phase and hence longer job completion time. With the adaptive map

completion threshold method, our scheduler can improve the throughput by up to

5%, comparing to the schedulers without this adaptive method (i.e., Tmin = Tmax).

Therefore, it is important to select the correct Tmin and Tmax for a cluster based on

its workloads. For a given cluster, its workloads generally remain similar [94], so the

parameters do not need to be always changed once they are determined.

3.3.3 Trace-driven Simulation Results

In this section, we will present the results of 20 runs in the trace-driven simulation.

In order to show the results more clearly, we normalize the experimental results by

the results of Fair scheduler. In the simulation, we also show the performance of
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MTS, MTS+CA-RTS and MTS+CA-RTS+CR-RTS (i.e., NAS) in order to show the

effectiveness of different mechanisms in NAS.

Figure 3.8(a) shows the normalized throughput of different schedulers in the sim-

ulation. We see that NAS achieves improvement over Fair, Delay, and SW-delay with

56.9%, 41.2%, 28.0% higher throughput. Figure 3.8(b) shows the normalized average

job completion time of different schedulers. We see that the average job completion

time of NAS is shorter than Fair, Delay and SW-delay by 44.3%, 38.0%, and 30.5%,

respectively. Both the results of throughput and average job completion time are

consist with the results in the real cluster experiments due to the same reasons.
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Figure 3.8: Results in the simulation.

In addition, from Figures 3.8(a) and 3.8(b), we see that MTS, CA-RTS, and CR-

RTS all show great impact on the improvement of throughput and completion time

in NAS. The experimental results indicate that NAS outperforms other schedulers on

improving the throughput and average job completion time, which demonstrates the

effectiveness of the mechanisms in NAS.

Figure 3.9 shows the normalized cross-rack traffic in the simulation, which is

consistent with the results in the real cluster experiments due to the same reasons.

From Figure 3.9, we see that MTS achieves similar cross-rack traffic as Delay, since
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Figure 3.9: Cross-rack traffic.

both MTS and Delay attempt to guarantee data locality for the map tasks. Using CA-

RTS with MTS, the cross-rack traffic is decreased, since CA-RTS places the reduce

tasks proportional to the map output distribution to minimize the cross-rack traffic.

The additional use of CR-RTS does not further decrease the cross-rack traffic. This is

because CR-RTS does not reduce cross-rack traffic in the system and it actually shapes

the cross-rack traffic (i.e., delays the transfer of heavy shuffle data until the network

is uncongested) to reduce cross-rack congestion, which improves the throughput and

average job completion time, as shown in Figures 3.8(a) and 3.8(b).

In order to show the degree of the overlap sacrifice because of the delay scheduling

for the reduce tasks, we draw Figure 3.10, which shows the average MapProgressRate

for all the jobs when the first reduce tasks of these jobs are scheduled. The MapPro-

gressRate of a job equals the fraction of completed map tasks of the job. A lower

MapProgressRate means more overlap between the map and shuffle phases. We see

that the results follows SW-delay>NAS>Delay≈Fair. Since both NAS and SW-delay

delay the reduce task scheduling when the network is congested, their overlaps be-

tween map and reduce phases are smaller than those of Fair and Delay. Moreover,

NAS has a lower average MapProgressRate than SW-delay. This is because when

the network is congested, SW-delay delays all the reduce tasks, while NAS keeps
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Figure 3.10: Job map progress rate when the first reduce task is scheduled.

assigning shuffle-light jobs rather than delaying them, resulting in a lower average

MapProgressRate.

Figure 3.11 shows the percentage of nodes that have map output data size higher

than TrafficThreshold (i.e., congested nodes). We see that NAS has a very small

percentage of congested nodes, while Fair, Delay and SW-delay have relatively higher

percentage of congested nodes. In NAS, MTS tries to constrain each node’s map

output data below TrafficThreshold. Some nodes become congested because their

map skip counter reaches the maximum value and then their map tasks are sched-

uled without the shuffle-qualified or data-locality constraint. The figure shows that

this situation happens only a few times, which means that the cross-node traffic are

constrained below TrafficThreshold most of the time. In Fair and Delay schedulers,

the scheduling of map tasks is only based on fairness without considering cross-node

traffic, leading to a large number of congested nodes. SW-delay generates even more

congested nodes than Fair and Delay because SW-delay schedules map tasks on the

containers when the network is congested, which may result in reading remote input

data and hence more congested network. This figure demonstrates the effectiveness

of MTS in NAS on constraining cross-node traffic.

Figure 3.12 shows the total number of occurrences of cross-rack congestions in the
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Figure 3.11: The number of occurrences of cross-node congestions.
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Figure 3.12: The number of occurrences of cross-rack congestions.

simulation. We see that NAS and SW-delay generate fewer cross-rack congestions

than Fair and Delay. This is because when the network is close to saturation, SW-

delay delays the scheduling of all reduce tasks and NAS delays the scheduling of

reduce tasks from shuffle-medium and shuffle-heavy jobs to reduce congestion, while

Fair and Delay do not have mechanisms to deal with the network congestion. This

figure indicates the effectiveness of NAS on reducing cross-rack congestion.

Recall that setting of TrafficThreshold in MTS and the adaptive map completion

threshold method in CA-RTS help avoid the cross-rack network congestion. To verify

this, we tested the performance of NAS without the setting of TrafficThreshold in

MTS (w/o TT ), NAS without the adaptive map completion threshold method (w/o
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Figure 3.13: The total number of occurrences of cross-rack congestions breaking down
by different mechanisms.

MCT ) and NAS without the both methods (w/o both). Figure 3.13 shows the total

number of occurrences of cross-rack congestions during the entire experiment time

of these methods compared with NAS (normalized by NAS). The total numbers of

occurrences of w/o TT, w/o MCT, w/o both, and NAS are 1.22, 1.07, 1.31, and

1, respectively. This result demonstrates that the setting of TrafficThreshold and

the adaptive map completion threshold method can help avoid cross-rack network

congestion.

The performance of NAS may vary if the number of jobs per user changes. Fig-

ure 3.14 shows the normalized throughput of NAS with different number of users in

the cluster comparing with Fair with 200 users. Note that when the number of users

decreases, the number of jobs per user increases. We see that NAS achieves higher

throughput with fewer users. This is because each user has more jobs when the num-

ber of users decreases, which provides more choices for scheduling the appropriate

task to the container and hence decreases the needs to skip a user in task searching

in MTS and CR-RTS.

We further evaluate how NAS improves the performance of jobs with different

shuffle data size. Figure 3.15 shows the throughput improvement (i.e., with NAS
without NAS

)
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Figure 3.14: Normalized throughput for different number of users.
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Figure 3.15: Throughput improvement for different jobs.

for shuffle-light, shuffle-medium, and shuffle-heavy jobs in the simulation. We see

that in the simulation, shuffle-light jobs achieve the highest throughput improvement,

followed by shuffle-medium and then shuffle-heavy jobs. The reasons are the same as

the reasons of Figure 3.6 in the real cluster experiment.

We also investigated how NAS performs as the map completion thresholds Tmin

and Tmax change. Figure 3.16 shows the throughput of NAS for varying Tmin and

Tmax in the simulation. For the curve Tmin = 0.2, it means that Tmin is fixed to 0.2

and Tmax is varied from 0.2 to 0.9. For the curve Tmax = 0.5, Tmax is fixed to 0.5

and Tmin is varied from 0.1 to 0.5. We normalized the results to the result when

Tmin = 0.2 and Tmax = 0.5. We see that when Tmin/Tmax is too small or too large,
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Figure 3.16: Throughput of NAS for varying Tmin and Tmax.

the throughput is decreased. The reasons are the same as the reasons of Figure 3.7

in the real cluster experiment.

3.4 Summary

Shuffle data transfer is the dominant source of cross-node/rack network traffic, which

greatly affects the performance of MapReduce clusters. However, few previous sched-

ulers handle the network traffic caused in the shuffle phase. Therefore, we presented

a new network-aware MapReduce scheduler (NAS). NAS consists of three mecha-

nisms: Map Task Scheduling (MTS), Congestion-reduction Reduce Task Schedul-

ing (CR-RTS) and Congestion-avoidance Reduce Task Scheduling (CA-RTS). These

three mechanisms jointly work to constrain the cross-node network traffic and reduce

cross-rack network traffic. We implemented NAS in Hadoop on a supercomputing

cluster. Through large-scale trace-driven simulation based on the Facebook workload

and real Hadoop cluster experiment, we showed that NAS greatly improves cluster

throughput and reduces average job completion time compared with the Fair, Delay

and ShuffleWatcher schedulers. In the future, we will extend NAS to schedule the

jobs considering the dependency between jobs in which, a job’s output is the input of
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another job. For example, we will consider the placement of dependent jobs to reduce

the network traffic generated from input data reading among the dependent jobs.
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Chapter 4

Job Scheduler in Hybrid

Electrical/Optical Datacenter

Network Architecture

Recently, several previous studies propose hybrid electrical/optical datacenter net-

work (in short Hybrid-DCN ) designs [30, 63, 134, 162], which augment the tradi-

tional EPS datacenter network with an on-demand rack-to-rack network using the

OCS. In Hybrid-DCN, OCS is used only for large data transfers between racks so

that the overhead of µs-to-ms switch-reconfiguration time is negligible. In order to

utilize Hybrid-DCN efficiently, job schedulers for data-parallel frameworks must keep

pace to meet the needs of such hybrid networks. In this chapter, we aim to design

a job scheduler that can efficiently leverage OCS in Hybrid-DCN to improve job

performance.

The remainder of this chapter is organized as follows. Section 4.1 introduces the

background in this chapter, including properties of OCS and Hybrid-DCN, desired

properties of Hybrid-DCN and opportunities. Section 4.2 describes the main design

of JobPacker. Section 4.3 presents the performance evaluation. Section 4.4 concludes
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Figure 4.1: An example of 4*4 OCS. (a) Input port 1 can only send data via OCS
to output port 2. (b) To send data from input port 1 to output port 1, we need to
reconfigure OCS.

this chapter with remarks on our future work.

4.1 Background

4.1.1 Optical Circuit Switches

OCS can provide many substantial advantages over traditional EPS [30, 63, 162].

First, OCS does not require transceivers that convert between light and electricity,

which provides a significant cost saving [63]. Second, OCS can provide up to 100Gbp-

s per port with much less power than EPS [63, 89]. An OCS consumes about 240

mW/port, while a 10GigE Ethernet EPS consumes 12.5 W/port. The slow reconfig-

uration is the only problem of OCS. Figure 4.1 shows an example of 4*4 OCS and

OCS reconfiguration to build the connection between an input port and an output

port. OCS can connect any input port to any output port, but one input port can be

connected to only one output port at a time. In other words, no input port can be

connected to multiple output ports and no output port can be connected to multiple

input ports. However, the reconfiguration results in a non-negligible delay δ (e.g.,

10ms for 3D-MEMS [89]). During the reconfiguration, no traffic is allowed to send

via OCS, which leads to non-trivial penalty for the flows with a small size.
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4.1.2 Hybrid Electrical/Optical Datacenter Network Archi-

tecture

Despite the slow reconfiguration of OCS, previous studies [30, 63, 113, 162, 163]

demonstrate that employing OCS in datacenter networks can deliver high bandwidth

and significant cost reduction compared to the traditional packet-switched datacen-

ters.

In this dissertation, we use the Hybrid-DCN architecture shown in Figure 4.2,

which is the same as Helios [63] and c-Through [162]. The top-of-rack (ToR) switches

are connected with a core EPS and an OCS, forming packet-switched network and

circuit-switched network, respectively. The link rate between ToR and core EPS is

bwe, while the link rate between ToR and OCS is bwo. We assume there are R racks

in the cluster and one rack can send data via OCS to only another rack at a time, as

in Helios [63] and c-Through [162]. We consider that the OCS has R input ports and

R output ports, and each rack connects to one input port and one output port. Since

OCS can connect one input port to only one output port at a time, it means that

one rack can send data via OCS to only one other rack at a time. To ensure a high

utilization of OCS (e.g., 90%), the average duration of each configuration should be

at least 9δ (e.g., 90ms) [89, 113], which means that OCS can only transfer elephant

flows (e.g., the flow with traffic greater than 100Gbps*90ms=1.125GB), while the

mice flows (non-elephant flows) are still sent via the EPS to meet certain latency

requirements. We assume that only the flows with size larger than the elephant flow

threshold (e.g., 1.125GB) are sent via OCS; otherwise, it communicates through EPS.

We define shuffle-heavy jobs as the jobs with shuffle data size no less than the elephant

flow threshold.
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Figure 4.2: Architecture of Hybrid-DCN. The link rate between ToR and core EPS
is bwe, while the link rate between ToR and OCS is bwo.

4.1.3 Traffic Matrices

We express traffic demand between each rack by a matrix M of size R∗R. We denote

the traffic sent via OCS as an R ∗R matrix Mo; the remaining traffic is sent via EPS.

The OCS reconfiguration process dynamically estimates the traffic demands, builds

the matrices, and accordingly computes and establishes the port connections for data

transfer. In this paper, as in [30, 63, 162], the OCS in Hybrid-DCN is reconfigured

periodically with a fixed reconfiguration interval (e.g., 1s).

To fully take advantage of OCS for high performance, the desired properties of

the matrices M and Mo for data-parallel frameworks are listed as follows, in which

the balance-skewness is identified by us.

• Skewness [113]. The demand from any rack is high to only a few other racks

and is low to the remaining racks, forming a skew demand matrix M . As a

result, the high-demand entries in M can be well served by the OCS, while the

low-demand entries can be served by the EPS.

• Sparsity [113]. The OCS demand matrix Mo should be sparse (with only a
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1 2 3 4

1 20 20 20 20

2 2.5 2.5 2.5 2.5

3 1.25 1.25 1.25 1.25

4 1.25 1.25 1.25 1.25

(a)

1 2 3 4

1 6.25 6.25 6.25 6.25

2 6.25 6.25 6.25 6.25

3 6.25 6.25 6.25 6.25

4 6.25 6.25 6.25 6.25

(b)

Figure 4.3: Balance-skewness of demand matrix.

few non-zero entries), since a rack can send data via OCS to only one other

rack at a time.

• Balance-skewness. The shuffle traffic of a shuffle-heavy job is balanced be-

tween racks to reduce the durations of shuffle data transfer, as illustrated in

Figure 4.3. Suppose that a shuffle-heavy job with 20 map tasks, 4 reduce tasks

and 100 units of shuffle data runs in a 4-rack cluster. Suppose flows with no

smaller than 1 unit are elephant flows and the speed of OCS is 1 per unit time.

Assume each map task generates the same size of shuffle data and each reduce

task processes the same size of data [94]. (a) This is the demand matrix when

racks 1,2,3,4 process 16,2,1,1 map tasks and 1,1,1,1 reduce task, respectively.

The time to complete the data transfer of this matrix is 20+20+20=60. (b)

This is the demand matrix when racks 1,2,3,4 process 5,5,5,5 map tasks and

1,1,1,1 reduce task, respectively. The time to complete the data transfer of this

matrix is 6.25+6.25+6.25=18.75.

In spite of the advantages of Hybrid-DCN, the state-of-the-art job schedulers in

YARN are not suitable for Hybrid-DCN because these schedulers cannot produce de-

mand matrices with the above desired properties. For example, in Fair scheduler [62]
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and Delay scheduler [172], the default input data placement strategy is to randomly

place the data blocks across the entire cluster. Then, the map tasks will be spread

across the entire cluster because a map task is assigned to the node that stores its

input data block in order to achieve high map data locality. ShuffleWatcher [3] aims

to evenly distribute the shuffle network traffic spatially (among different racks) and

temporally (during different time periods). These schedulers generate many mice

flows, which make the traffic demand matrices non-skew and non-sparse. Corral [94]

places all the map and reduce tasks of a job in the same set of racks to avoid cross-rack

shuffle data transfer, which may produce high competition of containers in the set of

racks and hence sacrifice parallelism. In additional, Corral cannot take full advantage

of OCS in Hybrid-DCN since Corral attempts to avoid cross-rack traffic. Therefore,

a new job scheduler is needed for YARN in Hybrid-DCN that can take full advantage

of the high-bandwidth OCS to achieve better job performance.

4.1.4 Opportunity

Several previous studies [2, 50, 66, 73, 74, 94, 97] show that cluster workloads contain a

large number of recurring jobs, whose job characteristics, including input/shuffle/output

data sizes, job arrival time, the number of map/reduce tasks, and the map/reduce

task duration, can be predicted with a small error (e.g., 6.5% [94]). The predictability

characteristics allow us to determine which racks to place the job input datasets and

run the tasks for the recurring jobs before the input datasets and the jobs are submit-

ted to the cluster. Many practical scenarios allow us to place data beforehand [94].

For example, in the cloud environment such as Microsoft Azure [117] and AWS [11],

data is often stored in a dedicated storage cluster (e.g., Microsoft Azure Storage [118]

and Amazon S3 [10]). To run MapReduce on the cloud, the data is fetched from the

storage cluster. At this step, the data can be placed on the pre-determined racks.
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4.2 Design of JobPacker

4.2.1 System Architecture

JobPacker has a shuffle data aggregation scheme that facilitates to use OCS. In addi-

tion, as shown in Figure 4.4, JobPacker consists of an offline scheduler and an online

scheduler. The offline scheduler is responsible for deciding the schedule for the re-

curring jobs in the next unit period and has two main components – job profiler and

job manager. The job profiler explores the tradeoff between parallelism and traffic

aggregation, and returns all feasible map-width and reduce-width pairs of each shuffle-

heavy recurring job (i.e., number of racks to run the map and reduce tasks) that can

leverage OCS effectively while achieving sufficient parallelism. Then, the job manager

finds out the best (map-width, reduce-width) for the shortest completion time of each

shuffle-heavy recurring job, and also generates the global schedule including which

racks to run the map/reduce tasks of each recurring job, and the sequence to run the

map/reduce tasks of recurring jobs in each rack that yields the best performance (i.e.,

high throughput for batch jobs and short completion time for online jobs). For exam-

ple, if the map tasks of job i, the reduce tasks of job j, and the map tasks of job k are

assigned to a rack, the sequence on this rack is Seq = {mapi, reducej,mapk}, where

mapj and reducej means any map task and any reduce task of job j, respectively.

Based on offline schedule generated from job manager, the online scheduler guides

the data placement and task placement of the job. The ad-hoc jobs are then scheduled

based on previous scheduling scheme (e.g., Fair [62] and use the idle resources that

are not assigned to recurring jobs.
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Figure 4.4: System architecture of JobPacker.

4.2.2 Shuffle Data Aggregation

Currently, the reduce task is associated with its shuffle and the shuffle starts fetching

data once the corresponding reduce task is scheduled [159]. However, this default

scheme does not facilitate shuffle traffic aggregation. Hence, we propose not to start

the shuffle immediately after its corresponding reduce task is scheduled to a container.

In order to aggregate the shuffle data transfers of a job, we force the shuffle to start

until more reduce tasks from the same job are assigned to containers and the size of

aggregated shuffle data of the reduce tasks reaches the elephant flow threshold. Then,

we can use high-bandwidth OCS for shuffle data transfer to reduce the transfer delay

of low-bandwidth EPS. If the size of aggregated shuffle data cannot reach the elephant

flow threshold for a job (i.e., non-shuffle-heavy jobs), the shuffle data is transferred

through EPS, which will not take a long time due to the small data size.

Figure 4.5 illustrates the shuffle data transfer in shuffle-heavy jobs in previous

schedulers and in JobPacker. The shuffle data aggregation in JobPacker brings about

two advantages. First, it enables the use of high-bandwidth OCS to accelerate the
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Figure 4.5: Illustration of shuffle-heavy jobs to take advantage of OCS.

shuffle data transfer, which shortens the shuffle duration significantly for the job. On

the contrary, without shuffle data aggregation, a shuffle-heavy job may have to use

the low-bandwidth EPS in Hybrid-DCN since the sizes of its traffic flows are small.

The shuffle data aggregation does not degrade the performance of non-shuffle-heavy

jobs much, as their shuffle data is relatively small so their shuffle duration is relatively

short.

Second, in YARN, the slowstart threshold is set to a small value (default 5% [3])

to achieve high intra-job concurrency for high performance. However, in this case,

the reduce tasks occupy the containers when they are doing nothing but transferring

shuffle data, which wastes precious resources. With the data aggregation scheme in

Hybrid-DCN, as shown in Figure 4.5, JobPacker can increase the slowstart threshold

to prevent the reduce tasks from occupying resources for too long without compromis-

ing job performance, since fast data transfers through high-bandwidth OCS offsets

the influence of intra-job concurrency reduction for shuffle-heavy jobs. For non-
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shuffle-heavy jobs, since transferring small-size data can be completed in short time

duration, they do not need a low slowstart threshold for high intra-job concurren-

cy. The slowstart threshold should be determined depending on the workloads in

the system (i.e., whether reduce tasks can occupy containers for a long time without

compromising other tasks’ performance). If the system is lightly loaded, the slowstart

threshold can be smaller for higher intra-job concurrency for high performance.

4.2.3 Offline Scheduler

We use rmap
j and rredj to denote the number of racks that are assigned to run job j’s

map and reduce tasks, respectively. We evenly distribute the map and reduce tasks

among the rmap
j and rredj racks to achieve the balance-skewness property.

4.2.3.1 Job Profiler

We use a latency response function (LRF) [94] to model the latency for every job j.

LRF takes the number of racks allocated to job j as input and predicts the latency

of job j. LRF assumes that the map, shuffle and reduce stages run sequentially for

simplicity though the shuffle stage overlaps with the map stage. This assumption

matches JobPacker since it reduces the overlap (as shown in Figure 4.5). LRF also

assumes that the map and reduce tasks of job j are scheduled on the same number

of racks (i.e., rmap
j = rredj ), which is not always correct in practice. In this paper, we

remove this assumption to improve LRF. The latency of a job is calculated by:

Lj(r
map
j , rredj ) = lmap

j (rmap
j ) + lshuj (rmap

j , rredj ) + lredj (rredj ), (4.1)

where lmap
j (rmap

j ), lshuj (rmap
j , rredj ) and lredj (rredj ) denote the latency for each of the three

stages. Please refer to [94] for the details of how to compute lmap
j (rmap

j ) and lredj (rredj )

from the estimated job characteristics (input/shuffle/output data sizes and the num-
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ber of tasks). lshuj (rmap
j , rredj )=

Dj(r
map
j ,rredj )

BW
, where Dj(r

map
j , rredj ) =

Ds
j

rmap
j ·rredj

·(rredj −1) is

cross-rack shuffle data size, BW is the bandwidth, and Ds
j is the shuffle data size of job

j. To determine bandwidth BW , we need to determine whether OCS or EPS is used

in the shuffle stage of job j. Since shuffle data is sent from all map tasks to all reduce

tasks, we check if the shuffle data size of job j divided by rmap
j ∗ rredj (i.e.,

Ds
j

rmap
j ·rredj

) is

greater than the elephant flow threshold. If yes, OCS is used; otherwise, EPS is used.

The job scheduler needs to carefully determine rmap
j and rredj for each shuffle-heavy

job to achieve an optimal balance between parallelism and traffic aggregation, which

yields relatively low job latency. For each value assignment of rmap
j and rredj , we can

compute the latency of job j based on Equ. (4.1).

Figure 4.6 shows the latencies of an example shuffle-heavy job under different

assignment combinations on a 15-rack cluster, where each rack has 600 containers.

The example job consists of 3472 map tasks and 169 reduce tasks. The row and

column represent rmap
j and rredj . Each entry is the latency when the map and reduce

tasks are evenly distribute to rmap
j and rredj racks.

We see that as rmap
j increases from 1 to 5, the latency of the job drops significantly

due to higher parallelism. The number of map tasks for this job is 3472, which is

greater than the total number of containers in 5 racks (5 ∗ 600 = 3000). Since

the job has 169 reduce tasks, running the reduce tasks on one rack (i.e., rredj = 1)

is sufficient for all the reduce tasks to run concurrently, i.e., achieving parallelism.

Additionally, the latencies in the green zone are considerably lower than the latencies

in the other zones due to two reasons. First, the assignment combinations in this

zone do not sacrifice the parallelism. Second, OCS is used for shuffle data transfer

in the green zone. As a result, the green zone illustrates all feasible (map-width,

reduce-width) pairs for job j that can leverage the OCS to achieve a good tradeoff

between parallelism and traffic aggregation.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630
2 379 373 373 373 373 373 373 373 373 373 373 373 373 373 373
3 295 289 287 287 287 287 287 287 287 287 287 287 287 287 287
4 295 289 287 286 286 286 286 286 286 286 286 286 286 286 286
5 295 289 287 286 285 285 285 285 285 285 285 285 285 285 285
6 211 205 203 202 202 201 201 201 201 201 201 201 401 401 401
7 211 205 203 202 202 201 201 201 201 201 372 372 372 372 372
8 211 205 203 202 202 201 201 201 201 351 351 351 351 351 351
9 211 205 203 202 202 201 201 201 334 334 334 334 334 334 334
10 211 205 203 202 202 201 201 320 320 320 320 320 320 320 320
11 211 205 203 202 202 201 309 309 309 309 309 309 309 309 309
12 211 205 203 202 202 201 300 300 300 300 300 300 300 300 300
13 211 205 203 202 202 292 292 292 292 292 292 292 292 292 292
14 211 205 203 202 202 286 286 286 286 286 286 286 286 286 286
15 211 205 203 202 202 280 280 280 280 280 280 280 280 280 280

Figure 4.6: Latencies of an example job under different assignments.

4.2.3.2 Job Manager

As [94], we consider two scenarios of job submission: batch and online scenarios. In

the batch scenario, all jobs are submitted at the same time, and the goal is is to

makespan, i.e., the time to finish all the jobs in the batch. In the online scenario,

jobs are submitted at different times and the goal is to minimize the average job

completion time, i.e., the average time from the arrival of a job until its completion.

For both batch and online scenarios, we can model the job scheduling as an op-

timization problem accordingly to achieve the goal. Nevertheless, the optimization

problems for both scenarios are analogical to complex directed-acyclic-graph (DAG)

structured job scheduling problem [94], which is well-known as NP-hard [122, 153].

Hence, we propose a heuristic method to solve the scheduling problem.

Batch scenario We define a shuffle-heavy job’s width as the maximum value of

rmap
j + rredj among all of its feasible (map-width, reduce-width) pairs. The width of a

non-shuffle-heavy job is defined as the total number of map and reduce tasks divided
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by the number of containers on a rack. First, we need to determine the priority

of each job in scheduling. We could use the algorithm in Corral [94] that sorts

the batch of jobs in descending order of job width. This widest-job-first algorithm

avoids the case that the widest job cannot find enough racks to run all of its tasks

concurrently and needs to wait for the job that is allocated to only a few racks to

complete, which wastes the resources [94]. However, using this sorting algorithm, the

extremely shuffle-heavy jobs are more likely to have very high priorities as these jobs

most probably have extremely huge input data size (see explanation in Section 4.2.4)

and hence have more tasks, which requires more racks. Then, it may lead to an

extremely high network load and computing load (i.e., demand for a larger number

of containers) at the beginning and a light network and computing load later. This

resource utilization pattern is not desired [3], because all these extremely shuffle-

heavy jobs compete for the precious resource simultaneously at the beginning, which

degrades the performance significantly.

In order to solve this problem, we propose to evenly divide a batch’s workload (for

shuffle data transfer and map/reduce tasks) to B sub-batches, so that each sub-batch’s

workload will not create resource competition while fully utilizing cluster resource, as

shown in Figure 4.7. The number of sub-batches B is a tunable parameter based on

the entire cluster capacity and the resource demands of jobs.

To divide into B sub-batches, we use Tetris [76], which chooses a job to assign

to a server with available capacity in order to increase the resource utilization of

each server considering multi-resources (e.g., CPU, memory, bandwidth). Basically,

based on the available resources on a server, Tetris gives a score1 to each job and

then greedily picks the job with the highest score to run on the server. We treat

each sub-batch as a server and treat the shuffle data size, the number of map tasks

1For example, a server has (0.2,0.3,0.5) available resources. If a job consumes (0.1,0.2,0.3), the
score of this job is the dot product of the two resource vectors, i.e., 0.1*0.2+0.2*0.3+0.3*0.5=0.23.
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Figure 4.7: Priority determination based on sub-batches.

and the number of reduce tasks of each job as its demand on multi-resources. The

capacity of each sub-batch is the capacity of the cluster on different dimensions (total

cross-rack bandwidth, the number of containers). Then the batch division problem

is interpreted as the job-to-server packing problem. The output includes B sub-

batches, and the resource demands on each resource from all sub-batch are similar.

The resource demands of a sub-batch on different resources equal the sum of shuffle

data sizes, the sum of the number of map tasks and the sum of the number of reduce

tasks of all the jobs in the sub-batch.

In each sub-batch, we sort the jobs in the descending order of width. The jobs

with the same width are further sorted in the decreasing order of job latency, because

the longest-latency-job-first first algorithm is effective for makespan minimization [72,

94]. After sorting, we combine all the sub-batches in a random order. Finally all the

jobs form a list for sequential offline scheduling as shown in Figure 4.7.

During the offline scheduling, we keep track of the time Tik when the container

k on rack i completes the current task and requests the next task. We compute the

time needed by the map, shuffle and reduce stage using the method in Equ. (4.1).

For each job j from the sorted list, we check whether it is shuffle-heavy or not

and conduct the scheduling as follows. We assign the tasks of a shuffle-heavy job to

68



the best (map-width, reduce-width) pair among all feasible pairs that yields the best

performance, while assigning the tasks of a non-shuffle-heavy job to any containers

that are available. We use Nmap
j and N red

j to denote the number of map tasks and

reduce tasks of job j.

Non-shuffle-heavy jobs We pick the first Nmap
j available containers based on the

next available time Tik of each container. We assign these containers to the map tasks

and update the Tik. Next, we pick the first N red
j available containers based on Tik

to run the reduce tasks of job j. The reduce stage start time Sred
j is computed by

adding the completion time of the last map task (cmpmap
j ) and the shuffle stage latency

lshuj (rmap
j , rredj ). Finally, the job manager updates the sequences of the racks that run

job j’s map and reduce tasks correspondingly, and records the set of racks that run

job j’s map tasks (Rmap
j ), which will be used to guide the input data placement in

online scheduling.

Shuffle-heavy jobs We enumerate each (map-width, reduce-width) pair among all

feasible pairs, and find the pair that yields the earliest completion time. For each rack

i, we find out the time when dNmap
j /rmap

j e containers are available. Then we find rmap
j

the earliest such available racks to run its map tasks, and update the corresponding

Tik of each assigned container. We use the same way above to compute the completion

time of the last map task cmpmap
j . Similarly, we find rredj the earliest available racks

that have dN red
j /rredj e available containers. Then we can compute the job completion

time in this iteration. After we finish all interations, we find out the (map-width,

reduce-width) that yields the earliest job completion for job j, and which racks to

run job j’s map and reduce tasks. Finally, the job manager updates the sequences of

those racks correspondingly, and records the set of racks that run job j’s map tasks

(Rmap
j ).

As a result, in the offline schedule, a rack has large data transfer to only a few
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racks and has small data transfer to the other racks, which satisfies the skewness and

sparsity desired properties. Also, since the tasks of each shuffle-heavy job are evenly

distributed among the set of racks, the balance-skewness is achieved.

Online scenario The objective in the online scenario is to minimize the average

job completion time. We sort the jobs in an increasing order of their predicted job

arrival times. When the jobs are submitted at the same time, we use the sorting

algorithm for sorting jobs in each sub-batch. Other steps are the same as those in

the batch scenario.

Over-provisioning Recall that we estimate the resource demand (i.e., the num-

ber of containers needed) of each recurring job with a small error. However, in the

offline scheduler, we intentionally assign more containers to each job than the esti-

mation by a certain ratio (i.e., over-provisioning ratio) due to two reasons. First,

we take the estimation variation into account. Thus, the recurring jobs can have

sufficient containers during the actual job execution. Second, we attempt to leave

ad-hoc jobs sufficient containers to run in the cluster. This strategy will not waste

resource because during actual job execution, when the recurring jobs do not need

as many containers as planned in the offline schedule, the unused containers can be

used by the ad-hoc jobs or other recurring jobs assigned to the same racks. The

cluster operators can adaptively determine the over-provisioning ratio based on the

estimation variance and the percent of ad-hoc jobs in their clusters to achieve better

performance. If a cluster has higher estimation variance or fewer recurring jobs, we

can set a higher over-provisioning ratio; otherwise, it can be zero.

Summary The job manager in JobPacker returns a sequence for each rack, which

includes the recurring jobs’ map or reduce tasks to run on this rack. Besides the

sequence for each rack, for each job j, the job manager outputs Rmap
j to guide the

placement of its input data. The outputs of job manager are then passed to the online

scheduler, which will be introduced in Section 4.2.4.
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4.2.4 Online Scheduler

The online scheduler executes the generated offline schedule. When the input dataset

of a recurring job j is uploaded to the cluster, JobPacker places one replica of each

data chunk of job j in a randomly chosen rack from Rmap
j to achieve data locality.

The second and the third replicas of all data chunks are randomly placed on the other

racks. This data placement strategy still obeys the default data placement in HDFS

that places the replicas of each data chunk in two random racks.

We try to determine if we can judge whether an ad-hoc job is a shuffle-heavy job

based on its input data size in order to avoid scheduling shuffle-heavy jobs together

in a rack to achieve the sparsity property. Using the two Facebook workloads in 2009

(FB2009-1, FB2009-2) and two Facebook workloads in 2010 (FB2010-1, FB2010-

2) from [32], we plot Figure 4.8 that shows the cumulative distribution function

(CDF) of input data size of all the shuffle-heavy jobs (shuffle data size greater than

1.125GB). We observe that most shuffle-heavy jobs have an input data size larger than

1GB. Based on the above observation, when the input data of a job is submitted

to the cluster, if the input data size is greater than a threshold (e.g., 1GB), we

empirically treat the job as a shuffle-heavy job. Note that non-shuffle-heavy jobs

may be sometimes over-estimated as shuffle-heavy jobs. However, over-estimation is

better than under-estimation, as under-estimation may inappropriately place some

shuffle-heavy jobs, which generates unwanted demand matrices.

To determine the priorities of ad-hoc jobs, we use the default user-specified sched-

uler, such as Fair [62]. Recall that in the offline schedule, each rack is assigned with a

sequence of recurring jobs. During scheduling, when a rack has a container available,

the online scheduler tries to follow the offline schedule (which is only for recurring

jobs). If there are recurring jobs, the online scheduler selects a map/reduce task of

the first job in the sequence. Only when there is no recurring job assigned to this
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Figure 4.8: Workload analysis of shuffle-heavy jobs.

rack, an ad-hoc job will be scheduled to the container. In this step, the scheduler

tries to schedule shuffle-heavy job first while avoiding scheduling shuffle-heavy jobs

together in a rack in order to achieve the sparsity property. Specifically, the sched-

uler checks whether there are any tasks of shuffle-heavy jobs currently running in the

rack. If yes, the scheduler selects a task from the ad-hoc non-shuffle-heavy job with

the highest priority. Otherwise, the scheduler gives high priority to the task from the

ad-hoc shuffle-heavy job with the highest priority if there are any in the queue. In

the case of failure of a rack, JobPacker ignores the guidance from the offline scheduler

and schedules the jobs assigned to this rack based on the default scheduler.

4.2.5 Discussion

In online scheduler, for each scheduling decision, JobPacker performs simple exami-

nations (e.g., sequence and priority of jobs), which is quite similar to the Fair sched-

uler [62]. Hence, the computation overhead in online scheduler is no more than Fair,

indicating the excellent scalability of JobPacker.

We also tried to aggregate the shuffle data transfers of ad-hoc jobs in the online

scheduler. Specifically, while the scheduling for the recurring jobs remains the same

in the online scheduler, we further attempted to place the tasks of ad-hoc jobs on only
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a few racks. We first analyzed the ratio between the best map-width and the number

of map tasks for each recurring job, and we took the average of the ratios of all the

recurring jobs. Then, when the input data of an ad-hoc job is uploaded to the cluster,

we computed the number of map tasks (input data size divided by block size), and

derived the map-width Wmap for the ad-hoc job by using the number of map tasks

and the average ratio above. Next, we placed the first replica of all the data chunks

in Wmap racks (randomly selected), and place the second and third replicas in Wmap

racks, which are randomly selected from the racks that do not have the first replica.

When placing the map tasks, the map tasks are restricted to run on Wmap racks that

are available the earliest and have its data. The reduce-width Wreduce of each ad-hoc

job is estimated using similar method and the reduce tasks are restricted to run on

any Wreduce racks that are available the earliest.

However, we find that such shuffle data aggregation of ad-hoc jobs degrades the

performance of ad-hoc and recurring jobs (see Figure 4.18 in Section 4.3.4). This is

because it is hard to determine how many racks and which racks to run ad-hoc jobs

without knowing the shuffle data size priori. Thus, we do not attempt to aggregate

shuffle data transfers of the ad-hoc jobs currently. Nevertheless, the ad-hoc jobs

still achieve significant improvement with JobPacker, as the recurring jobs can take

advantage of OCS, the network load on EPS are significantly reduced, which benefits

the ad-hoc jobs. We leave the exploration on how to place the tasks of ad-hoc jobs

to aggregate their shuffle data transfers as a future work.

4.3 Performance Evaluation

4.3.1 Traces and Settings

Workload traces We evaluated JobPacker assuming that all the jobs are recurring
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first, and then using the workload with a mix of both ad-hoc and recurring jobs. We

also conducted the sensitivity analysis of different settings. The workload trace we

used was from the SWIM Facebook workloads [32]. Since this workload trace misses

important information such as task running time, we first replayed all the jobs in the

trace (using the tools provided in the same project [32]) one by one on a single-node

Hadoop YARN cluster and then recorded the necessary information for every job.

We used this recorded log as the workload trace for simulation and emulation.

Simulation In order to evaluate the performance of JobPacker in a large scale,

we built a flow-based event simulator (details in Chapter 6) to replay the workload

trace. In the simulation, there are 600 servers, organized into 20 racks with 30 servers

each. Each server can run up to 20 tasks and has 10Gbps network bandwidth. The

Hybrid-DCN topology is the same as in Figure 4.2. The link rate between the ToR

switch and core EPS is 30Gbps, which yields a 10:1 oversubscription ratio. The ToR

switch and OCS are always connected with 100Gbps link. We ran 1000 jobs selected

from the workload. The elephant flow threshold was set to 1.125GB, which is inferred

empirically from previous studies [63, 89, 113] to achieve high OCS utilization. As in

[63, 162], we used Edmonds’ algorithm [58] to compute the optimal input-to-output

configuration for OCS in every reconfiguration.

Emulation on GENI We also conducted an emulation on GENI [69]. We built

a testbed with 10 servers on GENI, each emulating a virtual rack. We assumed that

each virtual rack can run up to 10 emulated tasks. Due to the bandwidth availability,

the link rate between virtual racks via OCS is 1Gbps, while the link rate between

virtual racks via EPS is 0.1Gbps. We limited the bandwidth for each task to 0.1Gbps,

yielding an oversubscription ratio of 10:1. To emulate the Hybrid-DCN network, we

used tc command to control the link reconfigurations. We also emulate the Hadoop

framework to send the shuffle data on each virtual rack. We ran 200 jobs chosen from

the workload trace. We shrank the transfer data size of each task, and the elephant
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flow threshold by a factor of 100, which equals the network bandwidth shrinking

factor in GENI. The emulation allows us to evaluate the performance of JobPacker

under real network environment.

4.3.1.1 Baselines

We compared JobPacker with Hybrid-DCN with three other systems.

(1) Fair scheduler [62] with Hybrid-DCN (F-Hybrid). It uses the Fair scheduler to

schedule the jobs in Hybrid-DCN. Fair is the most widely used scheduler in current

production clusters [62], and it assigns resources to jobs so that each job roughly

receives an equal share of resources (containers) over time.

(2) Corral [94] with Hybrid-DCN (Corral). Corral places the map and reduce

tasks of the same job on the same set of racks to reduce the cross-rack shuffle data

transfer.

(3) Fair scheduler with traditional packet-switched datacenter network (F-EPS).

It uses the Fair scheduler to schedule the jobs in a packet-switched network. In this

system, the ToR switches are connected through an EPS core switch and their link

rate is 100Gbps (1Gbps on GENI). This link rate is as high as the link rate of OCS

though the system does not have OCS. However, the high-bandwidth EPS in this

architecture leads to up to a factor of 9 higher CapEx and OpEx [63, 162], compared

to the Hybrid-DCN.

4.3.2 Trave-driven Simulation Results

In this section, we present the experimental results in the simulation. We considered

that all the 1000 jobs are recurring and can be predicted with zero error. All the

experiments were run for 20 times and the average results are reported. The OCS

was reconfigured every 1 second [162] and the reconfiguration delay was 10ms. The
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slowstart threshold was 0.7. The over-provisioning ratio was set to 0, as all the jobs

are recurring.

4.3.2.1 Batch Scenario

In the batch scenario, the 1000 jobs were divided into 5 sub-batches. Figure 4.9 shows

the makespan of different methods in the simulation. All the results are normalized

by the results of F-Hybrid. We see that JobPacker outperforms F-Hybrid by 35% in

the simulation. This is because Fair scheduler does not aggregate the network traffic

to take full advantage of OCS in Hybrid-DCN. On the contrary, JobPacker attempts

to aggregate the shuffle data transfer by placing the map and reduce tasks in a few

racks without sacrificing the parallelism. Compared with Corral, JobPacker reduces

the makespan by 23.5%. JobPacker is better than Corral in Hybrid-DCN because

Corral attempts to place both map and reduce tasks on the same set of racks to reduce

shuffle data transfer, which may result in high resource contention on the set of racks

and hence it may take a long time for each job to get resources. Besides, Corral does

not have the traffic aggregation mechanisms in JobPacker (e.g., postponing the shuffle

data transfer) to trigger the use of OCS, which leads to a low utilization of OCS. On

the contrary, JobPacker increases the utilization of OCS and allows the map and

reduce tasks to be scheduled on different sets of racks. We also see that JobPacker

achieves a comparable performance as F-EPS (less than 5% difference). However, as

mentioned above, F-EPS generates significantly higher CapEx and OpEx. The results

above demonstrate the effectiveness of JobPacker on improving the performance of

data-parallel frameworks in Hybrid-DCN.

We then measured the percentage of total traffic sent via OCS and EPS, respec-

tively. Figure 4.10 shows the percentage of traffic sent by OCS and EPS in the

simulation. Since F-EPS does not have OCS, we do not show its results. We see that

the OCS has a much higher utilization in JobPacker in the batch scenario (98.3%),
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Figure 4.9: Makespan results in the batch scenario.
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Figure 4.10: Percentage of traffic through OCS and EPS in the batch scenario.

compared with F-Hybrid (1.3%) and Corral (23.9%). This is because JobPacker ag-

gregates the shuffle data of shuffle-heavy jobs to trigger the use of OCS to accelerate

the shuffle data transfer. On the contrary, F-Hybrid spreads the shuffle data across

racks, and hence is less likely to leverage OCS. Corral attempts to avoid cross-rack

traffic and does not postpone the shuffle data to trigger the use of OCS. Hence, Cor-

ral has much lower OCS utilization than JobPacker. The result demonstrates the

outstanding performance of JobPacker on taking advantage of OCS.
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Figure 4.11: CDF of job completion times in the online scenario.

4.3.2.2 Online Scenario

In this section, the jobs arrived uniformly at random in [0, 90]min in the simulation.

Figure 4.11 shows the CDF of job completion times in the simulation. We see that the

JobPacker significantly shortens the job completion times, compared with F-Hybrid

and Corral. Specifically, JobPacker outperforms F-Hybrid with 43% improvement

at the median job completion time. Compared with Corral, JobPacker reduces the

median job completion time by 28%. We also see that the CDF of JobPacker is very

similar to the CDF of F-EPS which however is very costly, indicating that JobPacker

can be a cost-efficient solution for the network bottleneck problem in data-parallel

frameworks. The results demonstrate the effectiveness of JobPacker on improving the

job performance in Hybrid-DCN.

We also measured the traffic sent via OCS and via EPS in the online scenario, as

shown in Figure 4.12. Similarly, compared with F-Hybrid and Corral, JobPacker has

a much higher OCS utilization in the online scenario.
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Figure 4.12: Percentage of traffic through OCS and EPS in the online scenario.

4.3.3 Emulation Results

In this section, we present the experimental results on GENI. We considered that all

the 200 jobs are recurring and can be predicted with zero error. All the experiments

were run for 20 times and the average results are reported. The OCS was reconfigured

every 1 second [162] and the reconfiguration delay was 10ms. The slowstart threshold

was 0.7. The over-provisioning ratio was set to 0, as all the jobs are recurring.

4.3.3.1 Batch Scenario

In the batch scenario, the 200 jobs were divided into 5 sub-batches. Figure 4.13

shows the makespan of different methods in GENI. All the results are normalized

by the results of F-Hybrid. We see that JobPacker outperforms F-Hybrid by 49%.

Compared with Corral, JobPacker has 33% improvement of makespan in GENI. We

also see that in GENI, JobPacker achieves a comparable performance as F-EPS (less

than 5% difference). The results in the emulation are consistent with the results in

the simulation due to the same reasons, demonstrating the effectiveness of JobPacker

on improving the performance of data-parallel frameworks in Hybrid-DCN.

We then measured the percentage of total traffic sent via OCS and EPS, respec-

tively. Figure 4.14 shows the percentage of traffic sent by OCS and EPS in GENI.
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Figure 4.14: Percentage of traffic through OCS and EPS in the batch scenario.

Since F-EPS does not have OCS, we do not show its results. We see that the OCS has

a much higher utilization in JobPacker in the batch scenario (96%), compared with

F-Hybrid (0.8%) and Corral (16.0%). The results in the emulation are consistent with

the results in the simulation due to the same reasons, demonstrating the outstanding

performance of JobPacker on taking advantage of OCS.

4.3.3.2 Online Scenario

In this section, the jobs arrived uniformly at random in [0, 20]min in GENI experi-

ment. Figure 4.15 showa the CDF of job completion times in GENI. We see that the

JobPacker significantly shortens the job completion times, compared with F-Hybrid
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Figure 4.15: CDF of job completion times in the online scenario.

0

20

40

60

80

100

OCS EPS

Pe
rc

en
ta

ge
 o

f 
tr

af
fi

c JobPacker
F-Hybrid
Corral

Figure 4.16: Percentage of traffic through OCS and EPS in the online scenario.

and Corral. Specifically, JobPacker outperforms F-Hybrid with 42% improvement

at the median job completion time. Compared with Corral, JobPacker reduces the

median job completion time by 27%. We also see that the CDF of JobPacker is very

similar to the CDF of F-EPS which however is very costly, indicating that JobPacker

can be a cost-efficient solution for the network bottleneck problem in data-parallel

frameworks. The results in GENI are consistent with the results in the simulation

due to the same reasons, demonstrating the effectiveness of JobPacker on improving

the job performance in Hybrid-DCN.

We also measured the traffic sent via OCS and via EPS in the online scenario, as

shown in Figure 4.16. Similarly, compared with F-Hybrid and Corral, JobPacker has
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a much higher OCS utilization in the online scenario in GENI experiments.

4.3.4 Mix of Ad-hoc and Recurring Jobs

In this section, as in [94], we evaluated JobPacker in an online scenario, where there

are a mix of ad-hoc and recurring jobs. Previous studies [2, 66, 94, 97] indicate that

there are 40%-60% recurring jobs in the cluster. Therefore, we randomly selected

half of the jobs as ad-hoc jobs and the rest are still recurring jobs. All the jobs

arrived uniformly at random in [0, 90]min and [0, 20]min in simulation and GENI,

respectively. In the offline scheduler, we set the over-provisioning ratio to 1.0.

4.3.4.1 Trace-driven Simulation Results

Figures 4.17(a) and 4.17(b) show the CDF of job completion times for recurring jobs

and ad-hoc jobs in the simulation, respectively. Clearly, JobPacker generates shorter

job completion times for both recurring and ad-hoc jobs, compared with F-Hybrid and

Corral. In the simulation, we see that JobPacker reduces the median job completion

time of recurring jobs and ad-hoc jobs by 40% and 38%, respectively, compared with

F-Hybrid. We also see that JobPacker outperforms Corral by 24% and 25% for

recurring jobs and ad-hoc jobs in the simulation. In addition, JobPacker achieves a

comparable performance as F-EPS (which is very costly), demonstrating the superior

performance of JobPacker. This is because in JobPacker, the recurring jobs can more

effectively utilize the OCS to transfer their shuffle data, which significantly frees the

network resource on EPS. Although we do not place the tasks of ad-hoc jobs on a

few racks to aggregate the data transfers to use the OCS, they still benefit from

the much lower utilization of network resource on EPS. Besides, as the recurring

jobs finish faster, more computing resources are available for the ad-hoc jobs, which

significantly increases the performance of ad-hoc jobs as well.
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Figure 4.17: CDF of job completion times with a mix of jobs in the simulation.
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Figure 4.18: CDF of job completion times under the aggregation strategy for ad-hoc
jobs.

We also tried to place the tasks of ad-hoc jobs in a few racks in Section 4.2.4 in the

simulation environment. Figures 4.18(a) and 4.18(b) show the CDF of job completion

times for recurring jobs and ad-hoc jobs, respectively, with the aggregation strategy

mentioned in Section 4.2.4 for ad-hoc jobs. Clearly, we see that the performance of

both recurring and ad-hoc jobs with JobPacker is degraded. This is because without

knowing the shuffle data size priori, we cannot explore how many racks and which

racks to run ad-hoc jobs. As a result, the ad-hoc jobs may sacrifice their parallelism

during traffic aggregation and use the low bandwidth EPS to transfer the shuffle data.
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4.3.4.2 Emulation Results

Figures 4.19(a) and 4.19(b) show the CDF of job completion times for recurring jobs

and ad-hoc jobs in GENI, respectively. Clearly, JobPacker generates shorter job com-

pletion times for both recurring and ad-hoc jobs, compared with F-Hybrid and Corral.

In GENI, JobPacker reduces the median job completion time of recurring jobs and

ad-hoc jobs by 39% and 37%, respectively, We also see that JobPacker outperforms

Corral by 26% and 29% for recurring jobs and ad-hoc jobs in GENI. In addition,

JobPacker achieves a comparable performance as F-EPS (which is very costly) Thus,

the results in the emulation are consistent with the results in the simulation, demon-

strating the superior performance of JobPacker.
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Figure 4.19: CDF of job completion times with a mix of jobs in GENI.

4.3.5 Sensitivity Analysis

In this section, we used our simulation environment to evaluate the robustness of

JobPacker to several factors in online scenario, unless otherwise specified. We analyze

the sensitivity when there are all recurring jobs, as in [94], unless otherwise specified.

The experiment settings are the same as Section 4.3.2 unless otherwise specified.

Error in prediction of shuffle data size We use the predicted shuffle data size
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to check if it is a shuffle-heavy job, determine all the feasible map-width and reduce-

width, and compute the latency of shuffle stage. We define the prediction error rate

of a job’s shuffle data size as |real−prediction|
real

. Though recent studies [2, 66, 94] show

that the characteristics of recurring jobs can be predicted with a low error rate around

6.5%, we varied the error rate for the prediction of the shuffle data size of all the jobs

by up to 50% to see how JobPacker performs. Figure 4.20(a) shows the median, 5th,

and 95th percentile job completion times of all the jobs in JobPacker versus different

error rates. We do not measure the performance of F-Hybrid and F-EPS here since

they do not predict the shuffle data size. As we see, the job completion times increase

as the error rate increases. However, even with some prediction error, JobPacker still

outperforms F-Hybrid by 33% and Corral by 25% at the median, and achieves similar

performance as F-EPS, as JobPacker effectively utilizes the OCS.

Error in job arrival time In the offline scheduler, we sort the jobs in the online

scenario based on the predicted job arrival times. In practice, the job arrival time

may vary from the predicted arrival time. In this experiment, we added a random

time delay in the range of [−200, 200]s to f portion of jobs, where f is varied in the

range of [10%, 50%]. Figure 4.20(b) shows the median, 5th, and 95th percentile job

completion times of all the jobs in JobPacker with varying portion of delayed jobs.

We see that although up to 50% of the jobs’ arrival times are not accurate, JobPacker

shortens the median job completion time by 23% and 22% compared with F-Hybrid

and Corral, respectively, and achieves comparable performance to F-EPS.

Slowstart threshold We varied the slowstart threshold in the range of [20%, 80%].

Figure 4.21 shows the median, 5th, and 95th percentile job completion times of all the

jobs in JobPacker with different slowstart thresholds. We see that when the slowstart

threshold is in the range of [50%, 80%], the job completion times are almost the

same, indicating that the slowstart threshold in JobPacker can be set to a sufficient

large range to achieve the best performance. On the other hand, when the slowstart
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Figure 4.20: Performance variation with error in prediction of job characteristics.

threshold is set to ≤ 40%, the job completion times slightly increase. In these cases,

the reduce tasks of the jobs hog up the resources that can be allocated to the tasks

of other jobs for too long because of low slowstart thresholds.

Over-provisioning ratio In the previous experiments when there are both recur-

ring and ad-hoc jobs, we set the over-provisioning ratio to 1.0. In this experiment,

we varied the over-provisioning ratio in the range of [0, 2] and used the same other

settings as in Section 4.3.4. Figure 4.22 shows the median, 5th, and 95th percentile job

completion times of all the jobs in JobPacker with different over-provisioning ratios.

The figure indicates that if the over-provisioning ratio is too low, the job completion

times are significantly affected, since the planned resources are not sufficient to com-

plete the recurring and ad-hoc jobs. The performance is not affected much when the

over-provisioning ratio becomes larger. This is because in real cluster running, the

over-provisioned resources can be used to run the ad-hoc jobs and other recurring

jobs planned on the same resources.

OCS reconfiguration interval We varied the OCS reconfiguration interval in the

range of [0.1s, 3s]. Figure 4.23 shows the median, 5th, and 95th percentile job comple-

tion times of all the jobs in JobPacker with different OCS reconfiguration intervals.
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Figure 4.21: Varying slowstart threshold.
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Figure 4.22: Varying over-provisioning ra-
tios.
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Figure 4.23: Varying OCS reconfiguration
intervals.
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Figure 4.24: Varying the number of sub-
batches.

We see that varying the reconfiguration interval only has minimal impacts on the per-

formance of JobPacker. Even setting the reconfiguration interval to 3s can achieve

a good performance (38% reduction on median job completion time compared with

F-Hybrid). This is because JobPacker aggregates the shuffle traffic to only a few

racks, which generates sparse and skew demand matrices for OCS. This allows OCS

to be reconfigured less frequently.

The number of sub-batches In the batch scenario, we divide the entire batch in-

to several sub-batches and sort each sub-batch individually. In this experiment, we

varied the number of sub-batches B in the range of [1, 20]. Figure 4.24 shows the
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makespans in JobPacker with different number of sub-batches. All the results are

normalized by the results of F-Hybrid. As B increases from 1 to 5, the makespan

decreases, since placing the jobs into multiple sub-batches can prevent high compe-

tition of resource. However, when B ≥ 5, increasing B only slightly impacts the

performance. This is because dividing the workload into 5 sub-batches is sufficient to

prevent the network contention from extremely shuffle-heavy jobs at the same time.

4.4 Summary

Previous studies propose hybrid electrical/optical datacenter networks, which leverage

the high-bandwidth optical circuit switch to increase network capacity. In the hybrid

networks, the optical circuit switch (OCS) is only used to transfer large flows between

racks and the small flows are sent via the traditional electrical packet switch (EPS).

Current job schedulers for data-parallel frameworks generate many small flows, which

cannot efficiently leverage OCS to accelerate the data transfer. To efficiently utilize

OCS, one approach is to aggregate the data traffic by placing the tasks of a data-

parallel job on only a few racks. However, there is a tradeoff between task parallelism

and traffic aggregation. While we can aggregate all the traffic if we place the tasks

on only a few rack, it may sacrifice the parallelism which degrade job performance.

We propose JobPacker, a new job scheduler for data-parallel frameworks in Hybrid-

DCN that more fully takes advantage of the OCS to improve job performance. Job-

Packer aggregates the data transfers of a job to use OCS effectively. Based on the

predictable characteristics of recurring jobs, JobPacker has an offline scheduler to

find out all feasible (map-width, reduce-width) pairs for every recurring job that can

use OCS effectively while achieving sufficient parallelism, find out the best (map-

width, reduce-width) pair with the shortest job completion time, and generate the

global schedule including which racks and the sequence to run the recurring jobs that
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yields the best performance. The offline scheduler also has a new sorting method to

prioritize the recurring jobs to prevent high resource contention while fully utilizing

cluster resource. Based on the offline schedule, an online scheduler places input data

and schedules the recurring jobs, and schedules non-recurring jobs to idle resources

that are not assigned to recurring jobs. We evaluated JobPacker using large-scale

simulation and small-scale emulation on GENI based on production workload, which

demonstrates its higher performance in comparison with other schedulers. The results

indicate that JobPacker reduces the makespan up to 49% and the median completion

time up to 43%, compared to the state-of-the-art schedulers in Hybrid-DCN. In the

future work, we would like to consider dependency among jobs in the job scheduling.
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Chapter 5

Job Placement and Data

Placement in Hybrid Scale-up/out

Cluster

Many previous studies [13, 18, 60, 137] show that the small jobs (i.e., jobs with

small data to process) may dominate the workloads in production, although the data-

parallel frameworks were originally built for large jobs (i.e., jobs with large data to

process). For example, the production workloads in Microsoft and Yahoo! clusters

have median job input size under 14GB [18, 60, 137] and 90% of jobs on a Facebook

cluster have input size under 100GB [13].

Conventionally, the data-parallel clusters consist of a large number of scale-out

machines to process the data-intensive jobs. Recent studies [18, 105, 110] advocate

to explore hybrid scale-up and scale-out clusters (in short Hybrid clusters) to handle

current diverse workloads that consist of a large number of small jobs and a few large

jobs. Here, scale-up is vertical scaling, which means adding more resources to the

nodes of a system, and scale-out is horizontal scaling, which refers to adding more

nodes with few processors and RAM to a system. Appuswamy et al. [18] evaluated
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the jobs with different characteristics on scale-up and scale-out machines and found

that scale-up is significantly better in some cases, than scale-out. Hence, in this

chapter, we aim to design a Hybrid cluster to handle the diverse workloads for high

performance.

The remainder of this chapter is organized as follows. In Section 5.1, we present

the motivations, benefits and challenges of designing a hybrid scale-up/out cluster.

We describe the main design of Hybrid cluster with corresponding job placement and

data placement strategies in Section 5.2. We present our experiment evaluation in

Section 5.3. Section 5.4 concludes this chapter with remarks on our future work.

5.1 Background

5.1.1 Opportunities, Objectives and Benefits

The workloads in modern production clusters become diverse [32]. Since

the performance of a job highly depends on where it runs, we may be able to find

a better cost-performance tradeoff for each job with different machines, rather than

pure cheap scale-out machines.

The large memory of scale-up machines provides benefits for the jobs with

large shuffle data size [18]. In Hadoop, each map and reduce task runs in a JVM.

The heap size is the memory allocated to each JVM for buffering data. The map

outputs are written to a circular buffer in memory, which is determined by the heap

size [18]. When the circular buffer is closed to full, the data is spilled to the local

disk, which introduces overheads. Therefore, by increasing the heap size, it is less

likely for the data to be spilled to local disk if the heap size is larger, leading to better

performance in the shuffle phase. The heap size is 200MB for each JVM by default in

Hadoop. However, with the large memory of scale-up machines, we can set a higher
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heap size with the large memory, which reduces the times to spill.

In addition, the excess memory on scale-up can be used as RAMdisk to store

shuffle data to accelerate its read/write. Hence, the scale-up machines can provide

more benefits to the jobs with large shuffle data size, as the shuffle is efficient in

scale-up.

Previous studies show that scale-up machines can process small jobs faster

than scale-out machines [18, 111, 112]. A big data analytic cluster traditionally

consists of many cheap scale-out machines. Scale-up machines differs from scale-out

machines in that scale-up machines have more powerful CPU and more RAM but less

number of CPU cores in one machine. Therefore, scale-up machines may process the

small jobs faster but large jobs slower [18, 111, 112] due to the fact that large jobs

are generally data-intensive and can be processed faster with higher parallelism on

scale-out machines. In this thesis, we use scale-up (scale-out) job and small (large)

job interchangeably.

To show the benefit of scale-up machines in details, we have conducted a measure-

ment study on Palmetto cluster [39] to compare the performance between scale-up

machine and scale-out machines. The scale-up machine is equipped with 24 cores E5-

2680V3 CPU, 128GB RAM size, while each scale-out machine is equipped with two 4

cores AMD Opteron 2356 CPU, 16GB RAM size. After some market investigations

[45, 123], we find that the price of each selected scale-up machine (i.e., around $5000

each) is similar to 5 selected scale-out machines (around $1000 each)1. We deployed

several configuration optimizations on the scale-up machine as in [18, 111, 112]. For

example, we used half of the RAM (i.e., 64 GB) as RAMdisk to store the shuffle data,

and also changed the heap size from default 200MB to 2.5GB.

We ran TeraSort and WordCount [16] with different input data sizes on one scale-

up machine and five scale-out machines, respectively. All results are the average of

1The prices were investigated in Feb, 2017
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10 runs. Figure 5.1 shows the normalized execution time of TeraSort and WordCount

(normalized by the results of scale-up machine) versus different input data sizes. For

both jobs, when the input data size is smaller than certain threshold (called crosspoint

threshold), the scale-up machine can outperform the scale-out machines by up to 70%;

otherwise, the scale-out machines can outperform the scale-up machine by up to 35%.

Similar conclusions are also observed in [18, 111, 112]. This is because (1) when the

input data size is small, scale-up machine benefits the job with more powerful CPU

and RAMdisk; (2) as the input data size of the job increases, the total number of CPU

cores and memory limit the performance of the job on scale-up machine, while scale-

out machines can benefit the job with more CPU cores and higher aggregate memory

bandwidth. However, we observe that since the job characteristics of TeraSort and

WordCount are different, they have different benefits from scale-up machines. Thus,

the crosspoint thresholds for the two jobs are different (32GB for TeraSort and 64GB

for WordCount).

In [111, 112], we have conducted thorough experiments for different types of ap-

plications (e.g., data-intensive and CPU-intensive) on the scale-up and scale-out ma-

chines, and provided an insightful analysis of the performance difference. Our results

also suggest that using scale-up machines can provide more promising performance

for the jobs with small input data size. However, clearly there is a job size beyond

which scale-out becomes a better option. Such a job size is job-specific, depending

on the job characteristics. For example, a job that generates more shuffle data may

achieve more benefits from scale-up, resulting in a larger crosspoint threshold of job

size, compared with a job that generates less shuffle data.

The job characteristics can be predicted with acceptable error [49, 66, 94].

Cluster workloads are known to contain a significant number of recurring jobs [2,

66]. A recurring job is a job that has the same script and is executed whenever new

data become available. Therefore, for this kind for recurring jobs, they have similar
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Figure 5.1: Results of TeraSort and WordCount on scale-up and scale-out.

characteristics, such as input data size, shuffle data size, output data size, and also

resource usage. Previous works show that we can predict the job characteristics of

these recurring jobs accurately [49, 66, 94]. For example, using the techniques in [94]

we can estimate the job input data size with only 6.5% of error on average. This

accurate prediction of future job characteristics can help us accurately separate the

future jobs to scale-up and scale-out jobs, and hence we can run the jobs accordingly

on scale-up or scale-out machines.

The benefits of Hybrid cluster can be summarized as follows.

• For the small jobs, they are executed on the scale-up machines, which process

the small jobs faster. Therefore, the performance of the small jobs is improved

because they benefit from the scale-up machines on Hybrid cluster.

• For the large jobs, although Hybrid cluster does not have any direct improve-

ment on them, they can also run faster. As the small jobs are executed on

scale-up machines, the large jobs can be run on scale-out machines with less

resource contention (e.g., CPU and network) from the large amount of small

jobs in current big data analytic workloads, and hence, the large jobs can also

finish earlier.
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5.1.2 Design Challenges

In this section, we identify the key challenges in designing Hybrid clusters to improve

the performance of big data analytic clusters. There are two main challenges – job

placement challenges (J.1, J.2, and J.3) and data placement challenges (D.1 and D.2).

• J.1 A proper job placement strategy is essential for the Hybrid cluster. The

jobs with different job characteristics may benefit differently from scale-up and

scale-out machines. Therefore, we need to adaptively place the jobs to scale-up

or scale-out machines based on their job characteristics to achieve the most

benefits for the jobs.

• J.2 The job placement strategy should consider the load balancing. After we

schedule the jobs to scale-up or scale-out machines based on their job charac-

teristics, severe load imbalance may occur on different types of machines. For

example, suppose a large amount of small jobs are submitted to Hybrid cluster

simultaneously, while there are not many large jobs. If we still run the jobs

on different machines based on their job characteristics, it leads to overload on

the scale-up machines, while under-utilizing on the scale-out machines. Hence,

the job placement strategy needs to adaptively schedule small jobs to the other

type of machines to avoid overload.

• J.3 It seems that it is straightforward to address J.2 challenge by moving tasks

from scale-up (scale-out) to scale-out (scale-up) when one type of machines are

under-utilized. However, this mechanism is not sufficient since the scale-up

and scale-out machines have different capability of computing for the tasks,

which is a typical problem in heterogeneous clusters. The different computing

speed results in significant imbalance progress of tasks within a job, that is, fast

machines complete the tasks faster and need to wait for the slow machines to
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complete the tasks of the same job. This leads to a non-negligible delay and

significantly degrades the performance of the job [4, 173].

• D.1 Data locality is an essential factor for high performance [172]. Since we

adaptively place a job to scale-up or scale-out machines based on its job char-

acteristics, in order to maintain data locality, we need to accordingly place the

data of every job to the machines that the job is supposed to run on.

• D.2 We cannot simply place the data of scale-up jobs on scale-up machines

and the data of scale-out jobs on scale-out machines. This is because the jobs

may be adjusted between scale-up and scale-out machines for load balancing

according to J.2 challenge. If the adjustment of some jobs occurs, the data

locality cannot maintain, which degrades the performance of Hybrid.

5.2 Design of Our Hybrid Cluster

In this section, we present the design of Hybrid cluster, including the architecture of

the cluster, job placement strategy and data placement strategy for this cluster.

5.2.1 Hybrid Cluster Architecture

In this section, we introduce the architecture for Hybrid cluster. In a traditional

Hadoop cluster, it generally consists of a large amount of scale-out machines, as

shown in Figure 5.2(a). The architecture of traditional scale-out Hadoop cluster is

organized into multiple racks [154]. In Hybrid cluster, we replace part of the scale-out

machines by scale-up machines that have the same cost as the scale-out machines.

However, there are two questions in the design of Hybrid cluster architecture – where

to place the scale-up machines in Hybrid and how many scale-out machines should

be replaced by the scale-up machines.
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Figure 5.2: Traditional scale-out cluster versus hybrid scale-up/out heterogeneous
cluster. The traditional cluster consists of multiple racks of scale-out machines, while
the Hybrid cluster consists multiple racks of scale-up and also multiple racks of scale-
out machines. The Hybrid cluster has a similar cost as the traditional cluster.

Where to place the scale-up machines in Hybrid? We propose the architecture

of Hybrid cluster as shown in Figure 5.2(b) – placing the scale-up machines and the

scale-out machines on separate racks so that no scale-up and scale-out machines are

on the same rack. The reasons why we use this architecture are summarized as

follows.

•We can reduce cross-rack network traffic by using this architecture. Jalaparti et

al. [94] demonstrated that most small jobs in current production workloads can be

placed in only one rack without sacrificing the parallelism and compromising the
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performance. Using this property, we can place the input data of the small jobs in a

single rack. As a result, the map tasks of a job can run on this rack for map input

data locality and the map output data is also generated in the rack. Subsequently,

we can schedule the reduce tasks of the job on the same rack, so that the shuffle data

transfers of this job are all within one rack, which reduces the cross-rack network

resource. In our designed Hybrid architecture, scale-up machines are in one rack, so

that the small jobs placed on scale-up machines can run within one rack, resulting

in less cross-rack network traffic from small jobs. Furthermore, this architecture can

benefit the large jobs that cannot be run in a single rack, as there is less contention

of cross-rack network resource from the small jobs.

•This architecture plays an important role in solving the data placement challenges.

For more details, we refer to the data placement strategy in Section 5.2.4.

•This architecture is easy to implement on Apache YARN [16]. We will explain this

in details in Section 5.3.1.

How many scale-out machines should be replaced by scale-up machines?

Empirical studies in [32, 49, 172] show that the relative proportion of small and

large jobs in a cluster is expected to remain stable over time. Hence, the cluster

operators can determine the number of scale-out machines to be replaced by scale-up

machines based on the portion of small jobs in the workload. If there are more small

jobs in the workload, the cluster operators can replace more scale-out machines with

scale-up machines; otherwise, they replace fewer scale-out machines with scale-up

machines. For instance, the scale-out jobs are considerably fewer in typical workloads,

but dominate the cluster resource usage (e.g., 80% to 99%) [32, 49, 172]. As a result,

in general, the cluster operators only need to replace a few scale-out machines (e.g.,

1% to 20%) with scale-up machines to accelerate the small jobs.
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5.2.2 Differentiating Small and Large Jobs

Previous studies [49, 66, 94] show that a large number of jobs in production clusters

are recurring and the job characteristics (e.g., shuffle data size) of the recurring jobs

can be predicted with a small error (e.g., 6.5% [94]). Hence, for recurring jobs, we can

leverage these predicted job characteristics to determine the types of them. However,

for non-recurring jobs, we can only know the number of map/reduce tasks of them. In

this section, we introduce how to differentiate small (scale-up) and large (scale-out)

jobs for both recurring and non-recurring jobs.

As we mentioned in Section 5.1.1, jobs with different characteristics may benefit

differently from scale-up and scale-out machines. To differentiate the jobs into two

types based on their job characteristics, the natural thinking is to use machine learning

technique, which takes the job characteristics as inputs and predicts each job’s type.

One question is what job characteristics we should use as inputs. We decide to use the

number of map/reduce tasks and shuffle data size as the inputs, due to the reasons

below. (1) As shown in Figure 5.1(a), the input data size of a job is clearly one

characteristic that affects the performance of the job on different machines. Since

input data size of a job is linear to the number of map tasks of the job, we use the

number of map tasks. (2) As mentioned in Section 5.1.1, since scale-up machines

can benefit the jobs with large shuffle data size because of the large memory size

on scale-up machines, shuffle data size is a non-negligible characteristic. (3) The

works [18, 110] show that the number of reduce tasks of a job is a factor that affects

the performance of the job on different machines.

For the machine learning technique, we use the Support Vector Machine (SVM)

[43] model. SVM is a classifier model that maps the feature data (i.e., job character-

istics) as points in high-dimensional space, so that the different categories are clearly

separated by a gap. More formally, SVM constructs a hyperplane to separate the

99



data into two categories, so that the distance from the hyperplane to the nearest data

point on each side is maximized.

We use SVM rather than other classifiers because of the reasons below.

• The job characteristics (the number of map/reduce tasks, shuffle data size) are

all continuous features, which can be handled by SVM.

• SVM is widely used for binary classification, which matches our case that divides

jobs into two types.

• The points mapped by the characteristics of jobs may not be linearly separable

in space. SVM provides kernel function to create a nonlinear classifier.

• SVM constructs a clear hyperplane to separate the jobs, so that we can calculate

the distance between a job to the hyperplane. This property is useful for the

job stealing strategy in Section 5.2.3.

While we can consider more job characteristics as inputs and use other machine

learning models to classify the jobs, our results in Section 5.3 show that using these

three factors (the number of map/reduce tasks, shuffle data size) can already deter-

mine the types of the jobs with 96.2% accuracy.

For each Hybrid cluster, it requires us to train a corresponding SVM classifier

using sufficient training data first. Then, how we classify recurring and non-recurring

jobs is summarized as follows.

Recurring jobs When a recurring job is submitted to the cluster, we can predict

its job type using the trained SVM classifier based on the job characteristics (i.e., the

number of map/reduce tasks and shuffle data size).

Non-recurring jobs As to the non-recurring job, only two job characteristics

(the number of map/reduce tasks) are known priori. So, the question is what shuffle

data size we should use for non-recurring job.
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When determining the type of a non-recurring job, we argue that the occurrence

of classifying a large job as a small job would be much worse than the occurrence of

opposite. This is because classifying a large job as a small job allows the large jobs to

run on the scale-up machines, which causes two issues. First, in Hybrid cluster, we

leverage the scale-up machines to accelerate the small jobs, but not large jobs. The

performance of large jobs may be greatly degraded, compared with the performance

on scale-out machines (see Figure 5.1(a)). Second, the large jobs consume a large

amount of resources [49] and run for a long time. If we place the large jobs on

scale-up machines when the scale-up machines are under-utilized, the large jobs may

occupy all the scale-up machines for a long time. In this case, the small jobs have

to wait for the large job and hence the performance of the small jobs are severely

degraded. Consider an extreme case that multiple large jobs are submitted to the

cluster while there are temporally no small jobs. If we run the large jobs on the

scale-up machines, the whole cluster ends up running the large jobs. When some

small jobs are submitted to the cluster afterwards, they have to wait for the large

jobs for a long time.

On the contrary, classifying a small job as a large job allows the small jobs to run

on the scale-out machines. In this case, the only impact is that this small job can-

not leverage the scale-up machines to accelerate its execution, which causes minimal

impact and is much less severe than the case above.

Hence, when determining the type of a non-recurring job, we aim to avoid the

occurrence of classifying a large job as a small job. To achieve this, we treat the

shuffle data size of the non-recurring job as 0. This is because scale-up machines can

benefit the job with large shuffle data size as mentioned in Section 5.1.1. By treating

the shuffle data size of a job as 0, if the job is predicted as “small”, its actual job

type will definitely be “small”, since with the job’s actual shuffle data size, the job

will obtain more benefits on scale-up machines.
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Summary We leverage a SVM classifier to differentiate the small and large jobs

based on the job characteristics. The input characteristics for a non-recurring job are

the number of map/reduce tasks and a constant shuffle data size (i.e., zero), while

the input characteristics for a recurring job are the number of map/reduce tasks and

its shuffle data size.

5.2.3 Job Placement Strategy

In this section, we present the job placement strategy accompanied with Hybrid

cluster to address the job placement challenges in Section 5.1.2.

Placing the jobs accordingly to scale-up or scale-out job queue (for J.1

challenge). First, when the jobs are submitted to the cluster, the job placement

strategy divides the jobs into scale-up job queue and scale-out job queue, using the

machine learning technique introduced in Section 5.2.2. The scale-up job queue of

jobs are scheduled on scale-up machines, while the scale-out job queue of jobs are

scheduled on scale-out machines. Next, Hybrid further sorts the jobs in each queue

based on the pre-defined cluster scheduler, such as Fairness [62] and Capacity [26] and

put each queue into a queue. When new jobs are submitted, we repeat the previous

steps to put the new jobs into corresponding queues.

When a container on a node is available, if it is on a scale-up (scale-out) node, the

resource manager (RM) assigns a task from the first job in the scale-up (scale-out)

job queue to the container. In this case, if there is not any adjustment (i.e., the job

stealing strategy that will be introduced below) on the two queues, the scale-up and

scale-out jobs are restricted to run on scale-up and scale-out machines, respectively.

Job stealing to balance the job loads for scale-up and scale-out machines

(for J.2 and J.3 challenges). In order to solve the J.2 challenge, we propose a job

stealing policy that actively steals jobs from the scale-up job queue to the scale-out
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job queue to achieve load balance.

The job stealing steals the entire jobs instead of individual tasks because of chal-

lenge J.3. If the job stealing steals tasks between scale-up machines and scale-out

machines, it may occur that the tasks of the same job run on both scale-up and

scale-out machines. As aforementioned, running the tasks of a job on different kinds

of machines may lead to extremely poor performance for the job [4, 68, 105, 173].

Therefore, we utilize a job-level stealing to handle challenge J.3. Specifically, when

the job stealing steals a job between two queues (i.e., scale-up queue and scale-out

queue), it finds a job that is not yet started and change its assigned queue to the

other queue. Notice that the job-level stealing policy does not incur any overhead

since the stolen jobs are still in the queue and not started yet, and no data movement

is needed using the data placement strategy in Section 5.2.4.

During job stealing, we propose to restrict the large jobs to run only on the scale-

out machines and do not allow large jobs to run on scale-up machines, due to the

reasons mentioned in Section 5.2.2 that large jobs suffer poor performance on scale-up

machines and may occupy the resources of scale-up machines for a long time, which

also degrades the performance of small jobs. Besides, in a production workload,

most of the jobs are small and the average arrival time between two small jobs is

short [18, 32, 49]. In this case, as the small jobs are submitted very frequent, the

scale-up machines are expected to be under-utilized for only a short time and will

soon become fully-utilized again.

Hence, large jobs are restricted to run on scale-out machines, while small jobs are

not restricted to run on scale-up machines and are allowed to run on both machines,

as shown in Figure 5.3. Specifically, we allow the scale-out machines to steal jobs

from the scale-up machines, when the scale-out machines are under-utilized. The job

stealing can be described in details as follows:

(i) If a scale-up machine requests for a task but there are not any scale-up jobs,
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Figure 5.3: Job stealing policy.

the RM delays to schedule any jobs to the scale-up machines until the next scale-up

job is submitted.

(ii) If a scale-out machine requests for a task but there are not any scale-out jobs

awaiting to schedule, the RM actively “steals” a job from the scale-up job queue.

Once a job is stolen to scale-out machines from scale-up machines, all the tasks of

this job are restricted to run on scale-out machines.

An important issue is which job to steal. In order not to degrade the performance

of the stolen job, it is better to find a scale-up job that is as close to the hyperplane

as possible, which means that the stolen job is the most similar to scale-out jobs in

the queue of scale-up jobs and hence the stealing generates minimal impact to the

stolen job.

Thus, to determine which job to steal, the RM computes the distances between

the hyperplane and the point that represents each scale-up job, and select the one

with the smallest distance. After stealing, this job becomes a scale-out job and is

restricted to run all its tasks on scale-out machines.
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5.2.4 Data Placement Strategy

In this section, we introduce the data placement strategy accompanied with the Hy-

brid cluster to address data placement challenges in Section 5.1.2.

In our prior study [110], we proposed to configure a remote file system with the

hybrid scale-up/out cluster to store all the input datasets, so that both scale-up and

scale-out jobs can process the same piece of data. In addition, the remote file system

provides easier centralized management for the administrator.

Table 5.1: Four architectures in our measurement.
Scale-up Scale-out

OFS up-OFS out-OFS
HDFS up-HDFS out-HDFS

In Clemson Palmetto HPC cluster [39], it provides the remote file system O-

rangeFS (OFS) that can be configured with Hadoop by replacing the traditional

HDFS. Thus, in [110], we built four architectures as shown in Table 5.1: scale-up

machines with OFS (denoted by up-OFS), scale-up machines with HDFS (denoted

by up-HDFS), scale-out machines with OFS (denoted by out-OFS), and scale-out

machines with HDFS (denoted by out-HDFS). We then measured the performance

of representative Hadoop applications (i.e., shuffle-intensive and map-intensive) on

these architectures. We aim to see if the use of a remote file system can provide

efficient data storage as we expected and whether it brings about any side-effect to

scale-up cluster or scale-out cluster.

Through our measurement study, we confirmed the benefits of the remote file

system. Thus, we proposed to configure a remote file system with the hybrid scale-

up/out cluster to solve the data placement challenges. Real cluster experiments show

that in the HPC environment our hybrid scale-up/out architecture with remote file
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system outperforms both the traditional Hadoop architecture with HDFS and with

OFS in terms of throughput and job completion time.

Our prior study [110] demonstrates the potential of using remote file system for

hybrid scale-up/out architecture. Nevertheless, this solution requires a large amount

of remote data read/write. Thus, we present a replication-based data placement

strategy with local HDFS in this dissertation to solve the data placement challenges.

In general, there are three replicas for each data block in the cluster [16]. For

the common case, HDFS’s replication placement policy is to put one replica in one

node in one rack, another replica in a node in a different (remote) rack, and the third

replica in a different node in the same remote rack. In other words, the three replicas

are placed in two racks; one replica in a rack and two replicas in another rack. In

this paper, we assume that the default replication factor (i.e., 3) is used. To solve

the challenges of data placement, our data placement strategy takes advantage of the

replication placement strategy.

Placing the data on both scale-up and scale-out machines (for D.1 and D.2
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challenges). We propose to place the replicas of each data block on both scale-up

and scale-out machines. Specifically, for a data block, the first and second replicas

are placed on the scale-out machines, while the third replica of the data block is

placed on the scale-up machines. Such a placement strategy can solve the D.1 and

D.2 challenges.

• First, D.1 challenge is solved since both scale-up and scale-out jobs can locate

their data on scale-up and scale-out machines, respectively.

• Second, even when a job is stolen to run different type of machines by the job

stealing strategy, the job can still locate its data on the other type of machines,

which solves the D.2 challenge.

Notice that with the help of Hybrid architecture in Section 5.2.1, the proposed

data placement strategy also satisfies the default replication placement rule in HDFS

that places the replicas for each data block in two different racks.

5.3 Performance Evaluation

In this section, we evaluate how the Hybrid cluster performs by real cluster run and

large-scale trace-driven simulation. We consider two job submission scenarios, batch

and online scenarios [94].

•The batch scenario means that the jobs are submitted to the cluster at the same

time. The metric to evaluate the performance in this scenario is the makespan (i.e.,

the time to complete all the jobs in the batch).

•The online scenario means that each job is submitted to the cluster at a specific job

arrival time. The performance metric in this scenario is the average job completion

time (i.e., the end time of a job minus the job arrival time).

107



5.3.1 Experiment Setup and Workload

Real cluster experiments We configured a Hybrid cluster on Palmetto cluster [39].

We used 40 scale-out machines from 4 different racks, each of which contains 10

scale-out machines. We used 2 scale-up machines from the same rack. Therefore, the

Hybrid cluster consists of 4 scale-out racks and 1 scale-up rack. The scale-up machine

is equipped with 24 cores E5-2680V3 CPU, 128GB RAM size, while each scale-out

machine is equipped with two 4 cores AMD Opteron 2356 CPU, 16GB RAM size.

After some market investigations [45, 123], we find that the price of each selected

scale-up machine (i.e., around $5000 each) is similar to 5 selected scale-out machines

(around $1000 each)2. We deployed several configuration optimizations on the scale-

up machine as in [18, 110]. For example, we used half of the RAM (i.e., 64 GB)

as RAMdisk to store the shuffle data, and also changed the heap size from default

200MB to 2.5GB. As to the traditional clusters, we used 50 scale-out machines from

5 different racks, each of which contains 10 scale-out machines. Thus, the Hybrid

cluster has a similar cost as the traditional cluster.

We implemented the job placement strategy on top of the Apache YARN [16]

framework. We ran on Hadoop 2.7.1. We emulated the data placement strategy

on our Hybrid cluster. After we configured the Hybrid cluster, we placed the data

blocks of each job to the racks based on our data placement strategy before the jobs

were submitted to the cluster. For the traditional cluster, we use the default data

placement strategy.

Large-scale simulation In order to show the performance of Hybrid cluster in

a large scale, we built an event-based simulator (details in Chapter 6) as [49, 94,

128] to simulate the real cluster. We simulated a Hybrid scale-up/out cluster and a

traditional scale-out cluster. In the simulation, the traditional cluster consists of 600

2The prices were investigated in July, 2017
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scale-out machines, which is organized to 20 racks with 30 scale-out machines each.

The Hybrid cluster consists of 19 racks of scale-out machines and 1 rack of scale-up

machines. In each rack of scale-out machine, there are 30 scale-out machines. In the

rack of scale-up machine, it contains 6 scale-up machines. In the simulation, each

scale-out machine can run 8 tasks simultaneously, while each scale-up machine can

run 24 tasks simultaneously.

Workload To train the SVM classifier for the Hybrid cluster, we replayed a 25428-

job Facebook workload trace [32] using the tools provided by [32]. We first ran the

25428 jobs one by one in the workload on scale-up machines and scale-out machines,

respectively, and then parsed the logs. We compared the execution time of each job

on different machines to determine the type of each job. We used the results as

the training dataset for SVM classifier. We applied the radial basis function (RBF)

kernel [43] to train the SVM classifier. In order to avoid over-fitting and get the best

parameters for SVM with RBF kernel, we used the most common method – cross

validation [100].

We used another 24442-job Facebook workload (FB-2010) [32] to validate the

SVM classifier and evaluate Hybrid. For the real cluster run, we randomly selected

1000 jobs from this workload (the work in [94] selected 200 jobs in experiments). In

the online scenario, the jobs arrived uniformly in a range of [0, 60]minutes. For the

simulation, we ran the whole workload to evaluate the performance. In the online

scenario in simulation, the jobs were submitted to the cluster based on the job arrival

time in the trace, which lasts for 24 hours.

Baselines. We compared our Hybrid cluster (Hybrid in short) against the base-

lines below.

(1) Fair scheduling [62]. The Fair scheduling assigns resources to different jobs in

a fair manner, so that each job receives the same resources over time. In order to

evaluate the performance of our Hybrid cluster and proposed job placement and da-
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ta placement strategies, we compare Hybrid with both Fair scheduling and proposed

strategies (H-FS-with) against Hybrid cluster with Fair Scheduling but without pro-

posed strategies (H-FS-w/o), and traditional scale-out cluster with Fair scheduling

(FS).

(2) Delay scheduling [172]. The priority of jobs in delay scheduling are the same as

Fair scheduling. When the next job does not have a data-local task, Delay scheduler

delays assigning resource to the job and looks for a data-local task from the following

jobs. In this case, we compare Hybrid with Delay scheduling and proposed strategies

(H-DS-with) against Hybrid cluster with Delay Scheduling but without proposed

strategies (H-DS-w/o), and traditional scale-out cluster with Delay scheduling (DS).

Note that Hybrid cluster is not only compatible with Fair and Delay, but also

compatible with other schedulers such as Corral [94] and Morpheus [97] by sticking

to the proposed job placement and data placement strategies in the paper.

5.3.2 Real Cluster Results

Accuracy of SVM

To evaluate the accuracy of SVM, similarly, we replayed the FB-2010 workload on

scale-up and scale-out machines, parsed the logs to get the execution times of all the

jobs on the scale-up and scale-out machines, and determined the type for every job.

We then applied the trained SVM classifier to predict each job in FB-2010. First, we

assume all the jobs in FB-2010 are recurring and have predictable job characteristics.

In this case, the SVM determines the types of all the jobs in FB-2010 with 96.2%

accuracy. Then, we assume 50% of jobs are recurring, while the remaining jobs are

non-recurring and only the number of map/reduce tasks is known priori. In this case,

the SVM achieves 85.7% accuracy, with no large jobs being classified as small jobs.

Next, we present the experimental results in the real cluster experiments. In the
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experiments below, 50% of the jobs are recurring and the remaining jobs are non-

recurring, unless otherwise specified.

Batch scenario Figure 5.6 shows the makespan of the entire workload in the real

cluster run for Hybrid and traditional clusters. We see that H-FS-with and H-DS-with

achieve 40% and 32% reduction of the makespan over FS and DS, respectively, which

demonstrates the effectiveness of Hybrid cluster. This is because (i) the scale-up

jobs in Hybrid cluster are run on the scale-up machines, which process scale-up jobs

faster; and (ii) the scale-out jobs in Hybrid cluster benefit from the less contention

of resources (e.g., CPU and network) from scale-up jobs. The figures also show

that H-FS-with and H-DS-with significantly outperform H-FS-w/o and H-DS-w/o,

respectively. Without our proposed strategies, the scale-out jobs can be placed on

the scale-up machines, which severely degrades the performance of both scale-up and

scale-out jobs. Therefore, H-FS-w/o and H-DS-w/o are even worse than FS and DS,

respectively. It indicates the effectiveness of our proposed job placement and data

placement strategies.
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Figure 5.6: Makespan results for all the jobs in the batch scenario.

We further measure the makespan reduction of the scale-up jobs. Figure 5.7 shows

the makespan of the scale-up jobs in the real cluster run. We see that H-FS-with and

H-DS-with achieve a large reduction of makespan of the scale-up jobs – 53% and 46%
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reduction of the makespan over FS and DS, respectively. Hybrid cluster significantly

reduces the makespan of scale-up jobs because of two reasons: (i) the scale-up jobs

in Hybrid cluster are run on the scale-up machines, which process scale-up jobs much

faster; and (ii) the scale-up jobs in Hybrid cluster benefit from less contention of

resources with the scale-out jobs. The figures also show that H-FS-with and H-DS-

with significantly outperform H-FS-w/o and H-DS-w/o, respectively, which indicates

the effectiveness of our proposed job placement and data placement strategies.
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Figure 5.7: Makespan results for scale-up jobs in the batch scenario.

Online scenario In this scenario, the results of H-FS-with and H-DS-with are

normalized to FS and DS, respectively. Figure 5.8 shows the average job completion

time for the entire workload in the real cluster run for Hybrid and traditional clus-

ters. We see that H-FS-with and H-DS-with achieve 51% and 52% reduction of the

average job completion time over FS and DS, respectively, which demonstrates the

effectiveness of Hybrid cluster. The figures also show that H-FS-with and H-DS-with

significantly outperform H-FS-w/o and H-DS-w/o, respectively, which indicates the

effectiveness of our proposed job placement and data placement strategies.

Figures 5.9(a) and 5.9(b) show the average job completion time for scale-up jobs

and scale-out jobs in the real cluster run, respectively. Comparing with FS and DS,

H-FS-with and H-DS-with reduce the average job completion time of scale-up jobs
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Figure 5.8: Job completion time results for entire workloads in the online scenario.
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(a) Average job completion time for scale-up jobs.
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(b) Average job completion time for scale-out job-
s.

Figure 5.9: Job completion time results in the online scenario.

significantly (more than 55%), while the average job completion time of scale-out

jobs is only reduced mildly (up to 20%). This is because in Hybrid cluster scale-up

jobs benefit from running on scale-up machines, which process the scale-up jobs much

faster. On the other hand, Hybrid cluster does not improve scale-out jobs directly.

Instead, the scale-out jobs only benefit from the less contention of resources from

scale-up jobs. The figures also show that H-FS-with and H-DS-with significantly

outperform H-FS-w/o and H-DS-w/o, respectively, which indicates the effectiveness

of our proposed job placement and data placement strategies.

Figure 5.10 shows the cumulative fraction of the completion times of the jobs in
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Figure 5.10: CDF of job completion time in the online scenario.

the entire workload in the real cluster run. We see that H-FS-with and H-DS-with

outperform FS and DS, respectively, with around 60% improvement at the median

for the job completion time. Especially, Hybrid has more significant effect on the

jobs with job completion time less than 100s. This is because the scale-up jobs are

run on scale-up machines, which process small jobs much faster. On the other hand,

we see that Hybrid has less impact on the scale-out jobs, since the scale-out jobs

only benefit from the less contention of resources from scale-up jobs. We also observe

that for some jobs with extremely large data sizes, their performance on Hybrid

cluster is even worse than that on the traditional cluster. This is because in Hybrid,

we replace some scale-out machines in the traditional cluster by scale-up machines,

resulting in fewer machines allowed to process the scale-out jobs. Therefore, the jobs

with extremely large data sizes may have worse performance in Hybrid than in the

traditional cluster. Figure 5.10 does not have the results of H-FS-w/o and H-DS-w/o,

since the results of H-FS-w/o and H-DS-w/o are similar to FS and DS, which makes

the figures difficult to distinguish.

Summary:

• In the batch scenario, Hybrid cluster can reduce the makespan of the entire

workload and the scale-up jobs significantly.
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• In the online scenario, Hybrid cluster can reduce the average job completion

times of all the jobs significantly.

5.3.3 Trace-driven Simulation Results

Next, we present the experimental results in the trace-driven simulation. In the

experiments below, 50% of the jobs are recurring and the remaining jobs are non-

recurring, unless otherwise specified.

Figure 5.11 shows the makespan of the entire workload in the large-scale simulation

for Hybrid and traditional clusters. Interestingly, in the simulation, the makespan of

the entire workload is reduced by only 27% and 20% in H-FS-w/o and H-DS-w/o,

compared with FS and DS. We will explain the reason below.
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Figure 5.11: Makespan results for all the jobs in the batch scenario.

Figure 5.12 shows the makespan of the scale-up jobs in the large-scale simulation,

which are consistent with the results in the real cluster run due to the same reasons.

In the simulation, the makespan of the entire workload is reduced by only 27%

and 20% in Hybrid. This is because the entire FB-2010 workload is highly skewed.

Most of the jobs (more than 85%) in the workload have input data sizes less than

100MB, while some jobs in the workload have input data sizes extremely large (more

than 5TB). These large jobs are all characterized as scale-out jobs and dominate
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Figure 5.12: Makespan results for scale-up jobs in the batch scenario.
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Figure 5.13: Job completion time results for entire workloads in the online scenario.

the makespan of the entire workload. This means that in the simulation, after all

the scale-up jobs are completed, there are still scale-out jobs running in the cluster,

which dominates the makespan of the workload. Therefore, although Hybrid cluster

reduces the makespan of scale-up jobs significantly, it reduces the makespan of the

entire workload by only 27% and 20% in the simulation.

Figure 5.13 shows the average job completion time for the entire workload in the

simulation. We see that the Hybrid cluster with a large scale simulation is consistent

with the results in the small-scale real cluster run due to the same reasons.

Figures 5.14(a) and 5.14(b) shows the average job completion time for scale-up

jobs and scale-out jobs in the simulation, respectively. We see that the Hybrid cluster
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(a) Average job completion time for scale-up jobs.
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(b) Average job completion time for scale-out job-
s.

Figure 5.14: Job completion time results in the online scenario.
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Figure 5.15: CDF of job completion time in the online scenario.

with a large scale simulation is consistent with the results in the small-scale real cluster

run due to the same reasons, which indicates the effectiveness of our proposed job

placement and data placement strategies.

Figure 5.15 shows the cumulative fraction of completion time in the simulation.

It confirms our observations in the real cluster run due to the same reasons.

Summary:

• In the batch scenario, Hybrid cluster can reduce the makespan of the entire

workload and the scale-up jobs significantly.
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• In the online scenario, Hybrid cluster can reduce the average job completion

times of all the jobs significantly.

5.3.4 Effectiveness of Each Strategy

In this section, we aim to investigate the effectiveness of the job placement and data

placement strategies in Hybrid. We measure the performance of Hybrid without our

job placement strategy that places jobs accordingly to scale-up or scale-out machines

(H-w/o-P), Hybrid without job stealing policy (H-w/o-JS ), and Hybrid without our

data placement strategy (H-w/o-DPS ). In this section, we only measure them on

H-FS-with and normalize the results to H-FS-with. Specifically,

•H-w/o-P uses the Fair scheduling to schedule the jobs, which does not take into

account the job characteristics.

•H-w/o-JS does not adopt the job stealing policy even when the scale-out machines

are under-utilized.

•H-w/o-DPS does not use our replication placement technology, and only uses the

default random replication placement in HDFS.

Batch scenario Figure 5.16(a) shows the makespan of H-FS-with, H-w/o-P, H-

w/o-JS, and H-w/o-DPS in the real cluster run. We see that the makespan of H-w/o-P

is increased by 29%, when comparing with H-FS-with. It indicates that the perfor-

mance of H-w/o-P is even worse than the traditional cluster with Fair scheduling

(shown in Figure 5.6) because of the following reasons. Without our job placement s-

trategy to place the jobs accordingly to scale-up or scale-out machines, (i) the scale-up

jobs may be assigned to the scale-out machines and hence they cannot take advan-

tage of the scale-up machines; and (ii) some tasks of scale-out jobs run in the scale-up

machines, which is very slow and hence results in poor performance. We also observe

that H-w/o-JS actually provides the same performance as H-FS-with in the batch
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(a) Makespan without strategies in the real cluster
run.
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(b) Makespan without strategies in the simula-
tion.

Figure 5.16: Measurement results of each strategy in Hybrid.

scenario. This is because in the batch scenario, the large jobs are all submitted to the

cluster, which makes the scale-out machines fully utilized all the time. Thus, the job

stealing actually does not have any effect on this FB-2010 workload as the scale-out

machines are never under-utilized. On the other hand, the makespan of H-w/o-DPS

is increased by 18%, when comparing with H-FS-with. This is because without our

data placement strategy, some tasks may fail to maintain data locality, which de-

grades the performance. Figure 5.16(b) shows the makespan of H-FS-with, H-w/o-P,

H-w/o-JS, and H-w/o-DPS in the large-scale simulation, which are consistent with

the results in the real cluster run due to the same reasons.

Online scenario Figures 5.17(a) and 5.17(b) show the average job completion

time of H-FS-with, H-w/o-P, H-w/o-JS, and H-w/o-DPS in the real cluster run and

in the simulation, respectively. We see that when comparing with H-FS-with, the

average job completion time of H-w/o-P is increased by 27%, while the average job

completion time of H-w/o-DPS is increased by 16%. This is because of the same

reasons in Figures 5.16(a) and 5.16(b). For H-w/o-JS, we see from the figures that

it increases the average job completion time on H-FS-with in the online scenario by

around 19%. This is because the job stealing policy steals scale-up jobs to run on
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(a) Average job completion time without strate-
gies in the real cluster run.
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(b) Average job completion time without strate-
gies in the simulation.

Figure 5.17: Measurement results of each strategy in Hybrid.

scale-out machines when the scale-out machines are under-utilized. Thus, the job

stealing policy helps reduce the response time of the jobs (i.e., the start time of the

job minus the job arrival time).

Summary: Through the results, we demonstrate the effectiveness of job place-

ment and data placement strategies for Hybrid cluster and conclude that when ac-

companying with our strategies, Hybrid cluster can achieve better performance.

5.3.5 Sensitivity Analysis

The benefits of Hybrid cluster depend on the prediction of job characteristics. In this

section, we evaluate the robustness of Hybrid cluster to the prediction error. We only

measure the results for H-FS-with and the results are normalized to the results when

there is no error. In this experiment, the error rate is defined as

prediction value− real value
real value

. (5.1)

A negative error rate means prediction value < real value. For the error rate

of “-100”, it means prediction value << real value. For example, suppose the
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prediction value is 0.5 GB and real value is 16GB. Thus, the error rate is -96.875%≈-

100%.

Error in predicted shuffle data size Although previous studies show that the

prediction error of job characteristics can be as low as 6.5% on average [94], we varied

the error rate of predicted job shuffle data size by up to 100%. The results below are

normalized to the result of H-FS-with without error.

Figures 5.18(a) shows the makespan versus error in data size in the batch scenario.

The figure indicates that Hybrid cluster can maintain very similar makespan when

the error is less than 30%. However, as the error increases, the makespan is also

increased. This is because as the error increases, the job type of more jobs may be

wrongly decided. This could cause some scale-out jobs to be run on scale-up machines,

which reduces the benefits of Hybrid cluster. Figures 5.18(b) shows the average job

completion time versus error in data size in the online scenario. Similar results are

observed: the Hybrid cluster maintains similar performance when the error is low;

however, as the error increases, the performance gets worse. The results demonstrate

that the performance of Hybrid cluster is not quite sensitive to small error in predicted

job data size.
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(a) Makespan versus data size prediction error
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Figure 5.18: Sensitivity analysis.
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5.4 Summary

We observe that the current workloads for big data analytic have diverse character-

istics. It is advocated in previous studies that we can process the jobs with different

characteristics using different machines. In this paper, we aim to design a Hybrid

scale-up/out cluster to improve the performance of big data analytics. However,

there are two main challenges – job placement and data placement challenges. In the

job placement challenge, it requires us to adaptively place a job to either a scale-up or

a scale-out machine to achieve the most benefits for the jobs. For the data placement,

it is critical to guarantee that the scale-up (scale-out) jobs have their data on scale-up

(scale-out) machines to maintain high data locality.

We propose a Hybrid architecture with corresponding job placement strategy and

data placement strategy to address the challenges. In Hybrid architecture, we separate

scale-up and scale-out machines to different racks. In the job placement strategy, we

actively place the jobs to different machines based on their characteristics. In data

placement strategy, we use replication placement technique to maintain high data

locality. We implement Hybrid on top of YARN. We evaluate Hybrid by running a

production workload (FB-2010) with both real cluster run and large-scale trace-driven

simulation. The results show that accompanying with our strategies, Hybrid cluster

can reduce the makespan by up to 40% and the median job completion time by up to

60%, compared to tradition scale-out cluster with state-of-the-art schedulers. In the

future, we plan to further explore a more complex Hybrid cluster with more kinds of

machines to fit more diverse workloads.
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Chapter 6

Simulator Framework

In the evaluations in previous chapters, we built a simulator to evaluate our proposed

schedulers in large scale. In this chapter, we will introduce the implementation details

of the simulator.

The prototype of our simulator is based on Hadoop [84]. Our simulator is trace-

driven and aims to mimic the work flows in a typical Hadoop cluster – how the tasks of

jobs are scheduled and processed, and how the data is transmitted through network.

It is worth mentioning that the focus of this dissertation is not to build fancy simulator

for Hadoop. Thus, the goal of our built simulator is NOT to provide accurate per-job

performance prediction, but to serve as an initial and intermediate step to evaluate

the impact of scheduling decisions on the system-level performance in a large scale,

so that we can have an accurate enough understanding of the performance of the

schedulers.

The remainder of this chapter is organized as follows. We describe the main design

of our simulator in Section 6.1. Section 6.2 presents the validation of our simulator.

Section 6.3 concludes this chapter.
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6.1 Design

6.1.1 Simulator Framework

Figure 6.1 shows the simulator framework. The simulator consists of a resource man-

ager, simulated Hadoop nodes and a flow-level simulator. The input of the simulators

is a job trace, which is a record of various parameters and characteristics of jobs from

a real Hadoop cluster, such as job arrival time, the number of map/reduce tasks,

task duration, and input/shuffle/output data size. The resource manager then gen-

erates jobs at their arrival time. Besides, the resource manager periodically receives

heartbeat from the simulated nodes about their resource status and the status of run-

ning tasks on the nodes. Based on the pre-defined scheduling algorithm, the resource

manager determines which nodes to schedule the tasks of jobs in the queue.

Each node has a certain number of containers, based on node specification. On

arrival of a task assignment on a node, the simulator determines whether data transfer

is involved. If yes, the data transmission information is sent to the flow-level simulator.

When the corresponding transmissions are finished, the node runs the task by letting

the container on the node wait a certain time (as specified in the job trace). The

above work flows are exactly the same as the typical Hadoop cluster.

6.1.2 Job Trace

The workload trace is derived from the SWIM Facebook workloads [32]. The original

trace contains the jobID, job submission time, and input/shuffle/output data size

of the jobs. However, it does not provide any information about the duration of

each map and reduce task, which is important in our simulation. In order to obtain

the duration of each map and reduce task, we can use the synthesized execution

framework in [32] to generate the corresponding jobs based on the trace and run the
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Figure 6.1: Simulator framework.

jobs one by one on a single-node cluster. We choose to carry out experiments on a

single-node cluster because it allows us to collect the duration of each map and reduce

task without considering the network factor. We then collect the Hadoop logs as the

job trace.

6.1.3 Resource Manager

The resource manager is responsible for scheduling the tasks of jobs. The resource

manager first checks whether there are new jobs submitted to the cluster and initial-

izes the corresponding jobs if needed. Then, after receiving every heartbeat from the

nodes, it checks whether there are any empty containers in the cluster and assigns

the tasks to the containers based on the scheduling algorithm. Here, the scheduling

algorithm is based on the scheduler we specify.
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6.1.4 Modeling the Nodes

The simulator creates a number of simulated nodes based on the cluster specification.

Each node consists of certain resources. As in many previous works [3, 48, 74, 94,

128], the simulator models each node’s resources as a certain number of containers,

each of which can run a task at a time. Notice that the nodes in the simulator have

the same number of containers as the single node used to run the trace.

Each node keeps track of the status of the tasks running on it. It periodically sends

the heartbeat message to the resource manager about its current resource status and

completions of tasks.

In addition to the computing resources (i.e., containers), each node also has a disk

that stores the input data blocks. For a map task, if its input data block is located on

the same node as where it runs, then data transmission is not needed. Our simulator

supports the input data replication of Hadoop, namely there are three copies placed

on three nodes for each input data block. For each map task, its input data blocks are

placed based on either the default data placement strategy of Hadoop (as introduce

in Chapter 2), or the specified data placement strategy.

6.1.5 Modeling the Tasks

When a node receives the message of running a task, the simulator models the task

in the sequence of events as follows: (i) The simulator checks if its input data is

needed to fetch from remote hosts. If yes, a data request is sent to the flow-level

simulator, i.e., generating new flows. The task waits until a message from the flow-

level simulator indicating that the data is received. (ii) The task is then run on the

node by letting the container on the node wait a certain time (as specified in the job

trace). (iii) Finally, the heartbeat message indicating the completion of the task is

sent to the resource manager.
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6.1.6 Flow-level Simulator

Depending on granularity of simulation models, network simulators can be classified

into two categories: packet-level simulator and flow-level simulator.

The packet-level simulator mimics behavior of every packet in a network, such

as the packet arrivals and departures. While packet-level simulator can more accu-

rately simulate the real network, previous study [6] show that existing packet-level

simulators, such as ns-2 [151] and ns-3 [125], are not suitable for simulating large

scale network environments due to the computational complexity. For instance, a

simulation with 8,192 hosts each sending at 1Gbps would have to process 2.5 ∗ 1011

packets for a 60 second run. In a packet-level simulator, it would take 71 hours to

simulate the transmission of 1 million packets per second using, which is too long for

a simulation [6].

Thus, we built a flow-level simulator rather than the packet-level simulator in our

case to coarsely model the behavior of the network. The flow-level simulator mimics

behavior of every flow in a network and aims to capture the flow transfer duration

from flow bandwidth allocation procedures. The flows arrive at the network according

to the placement of a tasks. When a task is assigned to a node, if it needs to fetch

data from remote node(s), then a new flow arrives. According to different datacenter

network architectures, we have two different flow-level simulators.

6.1.6.1 Traditional EPS Datacenter Network Architecture

In traditional EPS datacenter network architectures (used in Chapters 3 and 5),

the flow-level simulator proceeds in discrete time ticks. At each tick, the simulator

updates the rates of all flows in the network and generates new flows if needed. To

determine the rate of a flow at a tick, an underlying mechanism that effects “statistical

bandwidth sharing” is used [6], i.e., the rate of a flow is adjusted in a max-min fairness
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manner based on the bandwidth capacity and the number of flows that it shares the

bandwidth with at that tick. At each time tick, a flow transmits data through the

network according to the rate allotted to it. When a flow completes sending all its

bytes, the flow departs and the simulator notifies the corresponding node so that it

can continue to process tasks.

6.1.6.2 Hybrid-DCN

In Hybrid-DCN, in addition to the conventional EPS datacenter network architecture,

there is an OCS network. Thus, the flow-level simulator consists of two networks. For

the EPS network, the flow-level simulator is the same as the one in Section 6.1.6.1.

For the OCS network, given a demand matrix Mo at a time, the simulator needs

to compute the optimal configuration for OCS and then adaptively reconfigure OCS

to determine which racks are connected, so that the size of the total traffic sent via

OCS is the maximum. As in many previous studies [63, 162], to compute the optimal

configuration for OCS, we used Edmonds’ algorithm [58], which can compute the

optimal configuration in polynomial time.

When a task is assigned to a node, if it needs to fetch data from remote node(s),

then a new flow arrives. If the new flow exceeds the elephant flow threshold, it will

use the OCS network and vice versa.

6.2 Simulator Validation

We would like to emphasize that instead of building a complex simulator that can

accurately reflect the job completion times of all the jobs, we are more interested in

implementing a simulator that provides an accurate enough estimation of the perfor-

mance of the cluster with the proposed schedulers with respect to the performance

of the cluster with the baseline schedulers.
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In this section, we validate our simulator by comparing the performance results

under the simulator and a 40-node cluster in CloudLab [41] with traditional datacenter

network architecture. The 40 nodes were organized in 8 racks with interconnection

of 1Gbps Ethernet. Each rack contains 5 nodes and each node has 1Gbps Ethernet

interconnect, resulting in a 5:1 oversubscription ratio. The number of containers on

each node was set to 16 and the input block size was set to 128MB. The parameters

in the simulator were set to the same accordingly.

The metric we used to validate our simulator with the real cluster is defined as

ratio =
ResultScheduler1
ResultScheduler2

, (6.1)

where Result is the normalized throughput or the normalized average job comple-

tion time (e.g., normalized to the Result of Fair scheduler in our case). Scheduler1

and Scheduler2 are the proposed scheduler and baseline scheduler, respectively. The

intuition of this metric is that, if the difference between the ratio in the simulation

and the ratio in the real cluster is within an acceptable range, then we can claim that

our simulator can present an accurate enough estimation of the performance of the

proposed scheduler.

To validate the simulator, we used 200 jobs selected from the Facebook trace [32]

as in Section 3.3. We exploited the method in Section 6.1.2 to first collect the history

logs as the job trace. We ran the 200 jobs for 20 times with different schedulers

(Fair, Delay, SW-delay, NAS in Section 3.3) in the simulator and in the real cluster,

respectively. We computed the average Result (i.e., throughput and average job

completion time) of these 20 runs for different schedulers.

Table 6.1: Throughput comparison.
Throughput NAS/Fair NAS/Delay NAS/SW-delay

ratio (simulation) 1.58 1.39 1.27
ratio (real cluster) 1.63 1.47 1.30
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Table 6.2: Average job completion time comparison.
Average job completion time NAS/Fair NAS/Delay NAS/SW-delay

ratio (simulation) 0.62 0.69 0.71
ratio (real cluster) 0.57 0.64 0.68

Tables 6.1 and 6.2 show the ratio results with respect to throughput and average

job completion time, respectively. We see that the difference of ratio between the

simulation and real cluster is in the range of 0.03-0.08 for throughput and 0.03-0.05

for average job completion time. The results demonstrate that our simulator can

present an accurate enough estimation of the performance of the proposed scheduler.

6.3 Summary

In this chapter, we presented the implementation details of our simulator that aims

to provide an accurate enough estimation of the performance of the cluster with the

proposed schedulers with respect to the performance of the cluster with the baseline

schedulers. Based on this goal, we define a new evaluation metric called ratio to

validate our simulator, where the ratio reflects the performance of the cluster with the

proposed schedulers with respect to the performance of the cluster with the baseline

schedulers. We validated our simulator by comparing the ratio under the simulator

and a 40-node cluster in CloudLab [41]. Results show that our simulator can present

an accurate enough estimation of the performance of the proposed scheduler.
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Chapter 7

Related Work

Over the past decades, more and more applications are scaling out to large clusters

to deal with the rapidly increasing data volumes. There are concentrated efforts in

supporting efficient execution of data-parallel applications. In this chapter, we discuss

existing efforts in improving the performance of data-parallel applications.

The remainder of this chapter is organized as follows. Section 7.1 discusses the ef-

forts in building high-capacity, low-latency datacenter networks. Section 7.2 describes

studies of workload characterization in data-parallel clusters. Section 7.3 presents the

efforts in improving the performance of data-parallel clusters. Section 7.4 introduces

the works about job schedulers in data-parallel clusters. Section 7.5 presents the

research of job schedulers in HPC, Grid, and multiprocessor systems.

7.1 Datacenter Networks

With the tremendously increasing bandwidth demand of distributed data-parallel

applications, much research has been focusing on building high-capacity, low latency

datacenter networks to support modern data-parallel clusters [40, 63, 77, 80, 81, 124,

144, 162]. To take advantage of the datacenter networks, many efforts have gone into
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designing solutions to minimizing the flow completion times or to ensuring fairness [6,

8, 9, 19, 20, 51, 57, 79, 82, 87, 93, 95, 102, 106, 132, 133, 140–143, 158, 169, 170].

However, despite the rapid innovations in the infrastructure and network schedul-

ing of datacenter networks, they are still application-agnostic. Data-parallel applica-

tions care about all the flows, while the general networking solutions schedule each

flow independently. To address such mismatch in application-level and network-level,

several flow-level techniques [35–38, 53, 89, 114, 121, 165] have been proposed to

decrease the communication time of data-parallel frameworks. They abstract the

flows in data-parallel framework as Coflow, a collection of flows that follow the same

objectives, such as shuffling stage within a MapReduce job. Based on the Coflow

abstraction, these studies design flow-level techniques to schedule Coflows to shorten

the Coflow completion time (i.e., the completion time of the last flow in a Coflow).

The efforts in such network-level schedulers are orthogonal to our dissertation and

can be combined with our work for better performance.

7.2 Workload Characterization of Data-parallel Clus-

ters

Many efforts have been devoted to characterizing the workloads on MapReduce and

cloud platforms. Chen et al. [32] analyzed and compared two production MapRe-

duce traces from Yahoo and Facebook in order to develop a vocabulary for describing

MapReduce workloads. Their another work [31] characterized new MapReduce work-

loads, which are driven in part by interactive analysis and with heavy use of query-like

programming frameworks such as Hive on top of MapReduce. Ren et al. [136] charac-

terized a workload from Taobao at the granularity of job and task, respectively, which

provides an understanding of the performance and the job characteristics of Hadoop
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in the production environment. Kavulya et al. [99] analyzed the characteristics of the

workload based on MapReduce logs from the M45 supercomputing cluster. Mishra

et al. [119] described the workload characterization and its application to the Google

Cloud Backend. It includes behavior characteristics such as CPU and bandwidth.

Williams et al. [168] proposed TideWatch, a system that enables a cloud provider to

monitor and predict the cyclicality of cloud workloads. The output of TideWatch,

in particular the period duration and grouping of virtual machines, can be exploited

to optimize VM management in a number of dimensions. CAppuswamy et al. [18]

conducted an evaluation of representative Hadoop jobs on scale-up and scale-out ma-

chines, respectively. They found that scale-up machines achieve better performance

for jobs with data size at the range of MB and GB.

These works demonstrate that the current workloads in data-parallel clusters are

highly diverse, which forms the motivations of our dissertation.

7.3 Performance of Data-parallel Clusters

Many works focus on improving the performance of the data-parallel clusters from

different aspects such as job scheduling [26, 62, 75, 86, 176], data placement [13, 15,

61, 109, 111, 112], intermediate data shuffling [42, 44, 155, 166] and improving small

job performance [60]. The work in [155] replaces HDFS with the Lustre file system

and places shuffle data in Lustre. MapReduce online [42] sends shuffle data directly

from map tasks to reduce tasks without spilling the shuffle data to the disks in order

to reduce the shuffle phase duration. Camdoop [44] performs in-network aggregation

of shuffle data during data forwarding in order to decrease the network traffic. Wang

et al. [166] proposed JVM-Bypassing shuffling for Hadoop to avoid the overhead and

limitations of the JVM. Unlike these previous works that focus on improving the

performance of traditional Hadoop using different methods, we focus on designing
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appropriate job schedulers to improve the performance of diverse workloads in data-

parallel clusters with different architectures.

7.4 Job Schedulers in Data-parallel Clusters

Several efforts [26, 62, 71] aim to achieve fairness among jobs or users for the map

tasks. Fair scheduler [62] is most widely used in real clusters to achieve fairness

among jobs, i.e., each job occupies approximately the same amount of resources.

Capacity scheduler [26], developed by Yahoo, shares the available resources fairly

among multiple organizations according to their computing requests to meet the SLA

(service level agreement). Dominant Resource Fairness scheduler [71] achieves a max-

min fairness for multiple resources (e.g., CPU, memory and I/O). In a multi-resource

cluster, the scheduling is determined by the user’s dominant share, which is calculated

by the maximum share of the user’s allocated resources. Delay scheduler [172] reduces

network traffic by solving the tradeoff between fairness and map input data locality.

When the job selected based on fairness cannot launch a local task, Delay scheduler

delays the job a small amount of time and launches a local task instead to maintain

high data locality. Quincy [91] calculates the cost of each assignment of map tasks

and nodes based on locality and fairness, and uses a min-cost flow algorithm to

find the optimal scheduling assignment. However, the above schedulers focus on

the scheduling of map tasks, which cannot address the network problems caused

by shuffle-heavy jobs. In the dissertation, we focus on designing job schedulers in

different architectures of data-parallel clusters to improve the cluster performance.

Some previous studies consider the scheduling of reduce tasks to improve the

cluster performance. Chen et al. [29] proposed a theoretical linear programming

framework to model the map-shuffle-reduce performance of MapReduce and devel-

oped a constant factor approximation algorithm to solve the model, which determines
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the order of map and reduce tasks on each processor to minimize the task response

time. Guo et al. [83] presented ishuffle that actively pushes map output data to

nodes and flexibly schedules reduce tasks considering workload balance. In order to

address the monopolizing behavior of long reduce tasks, Wang et al. [167] presented a

Preemptive ReduceTask mechanism, which enables the reduce tasks to be preempted

in a work-conserving manner, i.e., without dumping data. Coupling scheduler [147]

gradually launches reduce tasks based on the progress of map tasks rather than using

a greedy algorithm to launch reduce tasks like Fair scheduler [62]. Tan et al. [148]

formulated the reduce task scheduling that minimizes the shuffle data transfer cost

to a classic stochastic assignment problem to find out the optimal reduce task place-

ment. Jiang et al. [96] designed Symbiosis, which identifies and corrects unbalanced

utilization of multiple resources during runtime to improve the resource utilization

such as computing and network resources. Purlieus [129] aims to improve locality of

MapReduce in a cloud by carefully placing virtual machine and data. ShuffleWatcher

[3] reduces the cross-rack congestion by delaying all the reduce tasks and tries to

place the map tasks into one or a fewer racks. However, the above works cannot fully

address the network bottlenecks caused by a large amount of shuffle-heavy jobs, since

they either cannot reduce/avoid network congestion, or incur additional drawbacks

such as increasing the cross-rack traffic by reading map input data. In addition, these

works cannot efficiently use OCS in Hybrid-DCN to accelerate the data transfer to

improve the job performance.

Recently, there have been plenty of studies [28, 62, 73, 74, 94, 96, 97, 172] focus-

ing on designing cluster schedulers to improve the performance of the clusters (e.g.,

throughput and SLOs). On one hand, these works are not network-aware and hence

they can neither handle the network bottlenecks caused by shuffle-heavy jobs nor

efficiently exploit OCS in Hybrid-DCN. On the other hand, these studies are com-

plementary to our design of hybrid scale-up/out cluster and can be combined with
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the Hybrid cluster for better performance. Specifically, we first utilize our work to

place the jobs and data into different machines, and then the cluster schedulers in

those previous studies can be further applied to allocate the resource among scale-up

machines and scale-out machines efficiently.

The job scheduling problem in heterogeneous cluster has attracted much attention

[4, 68, 105, 173]. They identify the causes of poor performance on heterogenous cluster

and address the poor performance using techniques such as scheduling backup copies

and estimating the job progress and prioritizing different jobs based on their progress.

However, none of these proposals consider the diversity of jobs in their solutions. In

this dissertation, we leverage the observation that different machines may result in

different performance for different jobs and design a Hybrid cluster to accelerate big

data analytics.

7.5 Job Schedulers in HPC, Grids and Multipro-

cessor Systems

In the world of high performance computing (HPC), Grid computing and multipro-

cessor systems, much research has been conducted on the job schedulers [1, 12, 21,

24, 25, 46, 52, 54–56, 59, 67, 70, 72, 88, 98, 103, 104, 107, 108, 115, 116, 131, 135, 138,

139, 146, 152, 156, 157, 161, 164, 171, 175]. Similar to the schedulers in data-parallel

clusters, the schedulers also assign tasks to different machines/processors, consider-

ing different requirements such as resource requirements, placement constraints, and

dependencies. The scheduling objectives are also very similar to the schedulers in

data-parallel clusters, including minimizing makespan, minimizing mean completion

time, maximizing throughput, fairness, or a combination of these. The papers [23,

65, 130] present good reviews on the topic.
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The works in [21, 72, 101, 108] consider malleable task scheduling in multiprocessor

systems, where each task can run on multiple servers. However, none of them address

the issues of scheduling in the context of efficiently exploiting the network to achieve

better performance.

In data-parallel clusters, tasks are independent to each other so that killing one

of them will not impact others. On the contrast, in the programming model like

MPI [126] and multiprocessor approaches such as coscheduling [127], tasks run con-

currently and communicate during their execution. Such a key difference leads to

new schedulers in data-parallel clusters, compared with the task scheduling in multi-

processor.

HPC schedulers [85, 92, 145, 177] schedule HPC jobs to run on a fixed number of

machines which communicate through a mechanism like MPI. The allocations to the

HPC jobs only change infrequently (e.g., when a node fails). This is because killing

or moving a single process of MPI jobs typically requires the restart of all of the other

processes, as these jobs consist of sets of stateful processes communicating across the

network.

On the contrast, the jobs in data-parallel clusters are elastic to achieve different

optimization goals. In data-parallel clusters, multiple jobs exploit statistical multi-

plexing to share the cluster and the nodes that can be assigned to a job are con-

tinuously changing with time. Thus, a node is in general assigned to different jobs

once its current tasks complete, rather than giving any job a long-term private allo-

cation. This is the primary reason that the previous scheduling techniques such as

gang scheduling [64] are no longer applicable to the data-parallel clusters. Instead,

the scheduler in data-parallel clusters needs to react dynamically to the conditions in

the cluster (e.g., nodes, network and job characteristics).

In addition, HPC jobs are usually CPU bound or communication bound and
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the HPC schedulers often target environment that has specialized hardware, such as

Infiniband and SANs. The data locality at the node level is often not considered

in these schedulers, which, however, is a very crucial factor in the schedulers for

data-parallel clusters.

The Grid schedulers like [149, 150] consider the locality constraints, but at the

level of different geographic sites. The papers [22, 33] also considered to replicate data

across different sites, which is similar to the replication in data-parallel cluster. The

difference is that the schedulers in data-parallel clusters focus on the task placement

in a local-area cluster and mainly consider the data locality at the level of node or

rack locality.
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Chapter 8

Conclusions

8.1 Summary of Dissertation

Although data-parallel frameworks were originally designed to process data-intensive

jobs with large input datasets, many previous studies show that current production

clusters process increasingly diverse jobs with different job characteristics (e.g., in-

put data size, shuffle data size, and output data size). It is crucial to improve the

performance the data-parallel clusters with diverse workloads.

In this dissertation, we mainly investigated the thesis statement:

• We can improve the performance of current state-of-the-art schedulers (e.g., Fair

and Delay schedulers in Hadoop) by balancing the network traffic temporally

and enforcing the data locality for shuffle data, aggregating the data transfers

to efficiently exploit optical circuit switch in hybrid electrical/optical datacenter

network while still guaranteeing parallelism of the jobs, and adaptively schedul-

ing a job to either scale-up machines or scale-out machines that benefit the job

the most in hybrid scale-up/out cluster.

Based on the results presented in the preceding chapters, we believe the work in

this dissertation supports this thesis statement. We have presented job schedulers
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in different architectures to improve the performance of data-parallel clusters with

diverse workloads. We claim the following contributions in this dissertation:

• In Chapter 3, we presented a new network-aware MapReduce scheduler (NAS).

NAS consists of three mechanisms: Map Task Scheduling (MTS), Congestion-

reduction Reduce Task Scheduling (CR-RTS) and Congestion-avoidance Reduce

Task Scheduling (CA-RTS). These three mechanisms jointly work to balance the

cross-rack network traffic temporally and reduce cross-rack network traffic. We

implemented NAS in Hadoop on a supercomputing cluster. Through large-

scale trace-driven simulation based on the Facebook workload and real Hadoop

cluster experiment, we showed that NAS greatly improves cluster throughput

and reduces average job completion time compared with the Fair, Delay and

ShuffleWatcher schedulers.

• In Chapter 4, we presented a job scheduler JobPacker for data-parallel frame-

works to meet the needs of modern advanced hybrid electrical/optical datacenter

networks. JobPacker aggregates the data transfers of a job to use OCS effec-

tively. Based on the predictable characteristics of recurring jobs, JobPacker has

an offline scheduler to find out all feasible (map-width, reduce-width) pairs for

every recurring job that can use OCS effectively while achieving sufficient par-

allelism, find out the best (map-width, reduce-width) pair with the shortest job

completion time, and generate the global schedule including which racks and

the sequence to run the recurring jobs that yields the best performance. The

offline scheduler also has a new sorting method to prioritize the recurring jobs

to prevent high resource contention while fully utilizing cluster resource. Based

on the offline schedule, an online scheduler places input data and schedules the

recurring jobs, and schedules non-recurring jobs to idle resources that are not

assigned to recurring jobs. We evaluated JobPacker using large-scale simula-
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tion and small-scale emulation on GENI based on production workload, which

demonstrates its higher performance in comparison with other schedulers.

• In Chapter 5, we illustrated the challenges in designing a hybrid scale-up/out

cluster and presented corresponding job placement and data placement strate-

gies to handle these challenges. In Hybrid architecture, we separate scale-up

and scale-out machines to different racks. In the job placement strategy, we

actively place the jobs to different machines based on their characteristics. In

data placement strategy, we use replication placement technique to maintain

high data locality. We evaluated Hybrid by running a production workload

(FB-2010) with both real cluster run and trace-driven simulation. The result-

s show that accompanying with our strategies, Hybrid cluster can reduce the

makespan and the job completion time, compared to tradition scale-out cluster

with state-of-the-art schedulers.

8.2 Future Work

This dissertation represents some of the first steps to support efficient data-parallel

frameworks in modern advanced datacenter networks and cluster architecture. The

work can be improved, enhanced or extended in many ways. We anticipate that, in

the near future, more and more advanced datacenter architectures would appear and

be deployed in practice. Future work might focus more on bridging the gaps between

data-parallel frameworks and modern advanced datacenter architectures. Specifically,

we list a number of potential future work here.

• With the more and more workloads in production, the jobs may have dependen-

cy among them, i.e., a job’s output is the input of another job. We will extend

our schedulers in this dissertation to consider the placement of dependent job-

141



s to reduce the network traffic generated from input data reading among the

dependent jobs.

• With the rapid development of optical technologies, we anticipate that optical

switching will dominate the future advanced datacenter networks in the future.

We will further identify the challenges for data-parallel frameworks to use the

emerging optical switching technologies, and explore appropriate job schedulers

to keep pace to meet the needs of the advanced datacenter networks.

• With the current trends that there are more and more jobs in production, we

anticipate that the jobs would be more and more diverse. We plan to further

explore a more complex Hybrid cluster with more kinds of machines to handle

more diverse workloads.
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