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Abstract—MapReduce is a popular computing model for parallel data processing on large-scale datasets, which can vary from
gigabytes to terabytes and petabytes. Though Hadoop MapReduce normally uses Hadoop Distributed File System (HDFS) local file
system, it can be configured to use a remote file system. Then, an interesting question is raised: for a given application, which is the
best running platform among the different combinations of scale-up and scale-out Hadoop with remote and local file systems. However,
there has been no previous research on how different types of applications (e.g., CPU-intensive, data-intensive) with different
characteristics (e.g., input data size) can benefit from the different platforms. Thus, in this paper, we conduct a comprehensive
performance measurement of different applications on scale-up and scale-out clusters configured with HDFS and a remote file system
(i.e., OFS), respectively. We identify and study how different job characteristics (e.g., input data size, the number of file reads/writes,
and the amount of computations) affect the performance of different applications on the different platforms. Based on the measurement
results, we also propose a performance prediction model to help users select the best platforms that lead to the minimum latency. Our
evaluation using a Facebook workload trace demonstrates the effectiveness of our prediction model. This study is expected to provide
a guidance for users to choose the best platform to run different applications with different characteristics in the environment that
provides both remote and local storage, such as HPC cluster and cloud environment.
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1 INTRODUCTION

MapReduce [19] is a framework designed to process a large
amount of data in the parallel and distributed manner on a cluster
of computing nodes. Hadoop, as a popular open source imple-
mentation of MapReduce, has been deployed in many large com-
panies such as Yahoo! [18] and Facebook [45]. Also, many high-
performance computing (HPC) sites [1] extended their clusters to
support Hadoop MapReduce. HPC differs from Hadoop on the
configuration of file systems. In Hadoop Distributed File System
(HDFS), data is stored in the compute nodes, while in HPC, data
is usually stored on remote storage servers. The Clemson Palmetto
HPC cluster successfully configured Hadoop by replacing the local
HDFS with the remote Orange File System (OFS) [1], as shown
in Figures 1 and 2.

In the last decade, the volumes of computation and data
have increased exponentially [12], [40]. Real-world applications
may process data size up to the gigabytes, terabytes, petabytes,
or exabytes level. This trend poses a formidable challenge of
providing high performance on MapReduce and motivates many
researchers to explore to improve the performance. While scale-
out is a normal method to improve the processing capability of
a Hadoop cluster, scale-up appears as a better alternative for a
certain workload with a median data size (e.g., MB and GB) [14],
[30], [33]. Scale-up is vertical scaling, which refers to adding
more resources (typically processors and RAM) to the nodes in
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a system. Scale-out is horizontal scaling, which refers to adding
more nodes with few processors and RAM to a system.

Considering the different combinations of scale-up and scale-
out Hadoop with a remote file system (OFS) and a local file
system (HDFS), we can create four platforms as shown in Table 1:
scale-up cluster with OFS (denoted as up-OFS), scale-up cluster
with HDFS (denoted as up-HDFS), scale-out cluster with OFS
(denoted as out-OFS), and scale-out cluster with HDFS (denoted
as out-HDFS). Then, an interesting question is raised: for a given
application, which is the best running platform.

To answer this question, it is important to understand the
performance of different types of applications (e.g., data-intensive,
CPU-intensive, and I/O-intensive) with different characteristics
(e.g., input data size, the number of file reads/writes, and the
amount of computations) on these four platforms, since a big
data workload generally consists of different types of jobs, with
input data size ranging from KB to PB [18], [43]. However,
there have been no previous works that conduct such a thorough
analysis. CPU-intensive applications include a large amount of
computations and devote most of the time on computing. Data-
intensive and I/O-intensive applications have large input data size
and require large amount of data read/write operations. Data-
intensive applications contain certain amount of computations
such as counting, while I/O-intensive applications do not or have
only few computations. Different characteristics of applications
may lead to different performance and gain different benefits in
the scale-up and scale-out systems. For example, data-intensive
applications have large input and shuffle data size and may benefit
more from a large size of memory and hence from the scale-up
machines.

In this paper, we have conducted comprehensive experiments
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Fig. 1. Typical Hadoop with HDFS local storage (HDFS in short).

Hadoop
MapReduce

OrangeFS

Hadoop
MapReduce

Hadoop
MapReduce

Hadoop
MapReduce

Remote Client Test Configuration

…

Fig. 2. Hadoop with the OrangeFS remote storage (OFS in short).

TABLE 1
Different platforms.

Scale-up Scale-out
OFS up-OFS out-OFS

HDFS up-HDFS out-HDFS

for different types of applications (including data-intensive, CPU-
intensive, and I/O-intensive applications) on the four platforms
with different input data sizes and provide an insightful analysis on
their performance. We also have analyzed how different applica-
tion characteristics affect the application performance and system
overheads on the four platforms and determine the best platform
for an application with certain characteristics. Our measurement
results provide a guidance on how to select the best platform to
run different types of applications with different characteristics.

The contributions of our paper are as follows:
1. We have conducted thorough experiments for different types
of applications (including data-intensive, CPU-intensive and I/O-
intensive) on the four platforms. We have analyzed how dif-
ferent application features (e.g., input data size, the number of
reading/writing files and the amount of computations) affect the
application performance on the four platforms and determine the
best platform for an application with certain features. We confirm
that replacing HDFS with OFS for Hadoop is feasible when data
size is relatively large.
2. Our measurement results provide a guidance on how to select
the best platform that leads to minimum latency to run different
type of jobs with different job characteristics.
3. Based on the measurement results, we also propose a perfor-
mance prediction model to help users select the best platforms.
Our evaluation using a Facebook workload trace demonstrates the
effectiveness of our prediction model.

The remainder of this paper is organized as follows. Section 2
describes the configurations of scale-up and scale-out machines for
Hadoop with OFS and HDFS on a HPC-based cluster. Section 3
presents the measurement results of performance for different
types of Hadoop applications and provides an in-depth analysis
of the results. Section 4 summarizes the observations and further
discusses the guidance to cloud environment. Section 5 presents
a performance prediction model to help users select the best
platforms and evaluates the prediction accuracy of our prediction
model. Section 6 gives an overview of the related work. Section 7
concludes this paper with remarks on our future work.

2 CONFIGURATIONS ON HPC-BASED HADOOP

In this section, we introduce the details on how to configure
Hadoop MapReduce on a HPC cluster. We do our experiments
on HPC cluster because HPC clusters generally have machines
with different CPU and memory, which allows us to deploy scale-
up and scale-out machines easily without any further cost. In
our experimental measurement, we use Clemson Palmetto HPC
cluster, which ranks the top five fastest supercomputers at public
universities in United States and the 66th fastest supercomputers
globally [5].

2.1 Introduction of Hadoop MapReduce
MapReduce [19] is a scalable and parallel processing framework
to handle large datasets. HDFS is a highly fault tolerant and
self-healing distributed file system to cooperate with Hadoop
MapReduce. HDFS has a master/slave architecture, which gen-
erally consists of a namenode and multiple datanodes. Namenode
manages the metadata of the cluster and provides the access to
files to clients, while datanodes are used to store the data blocks.
HDFS stores the input data of each job into several blocks. The
number of blocks is calculated by input data size

block size . In a MapReduce
job, there are generally three phases: map, shuffle and reduce. In
the map phase, the job tracker assigns each mapper to process one
data block. Note that the data block may locate at the same nodes
with the mapper, which is called data locality. Hadoop MapReduce
prefers high data locality to reduce network consumption for data
movement to improve performance. All the mappers generate
the output, called intermediate data (i.e., shuffle data). In the
shuffle phase, each mapper’s output is then partitioned and sorted.
Different partitions are shuffled to corresponding reducers. Once
the reducers are scheduled on specific nodes by the job tracker,
the shuffle data is copied to the reduce nodes’ memory first. If the
shuffle data size is larger than the size of in-memory buffer, the
shuffle data will be spilled to local disks, which results in extra
overheads. In the reduce phase, the reducers aggregate the shuffle
data and produce the final output of the jobs.

2.2 Experiment Environment
In the experiments, we use the Hadoop MapReduce version
1.2.1. We use four machines for scale-up Hadoop. Each scale-
up machine is equipped with four 6-core 2.66GHZ Intel Xeon
7542 processors, 505GB RAM, and 91GB hard disk and 10Gbps
Myrinet interconnections. To achieve fair performance compari-
son, we require the scale-up and scale-out machines have similar
cost. We investigated the cost information from [9] and found
that one scale-up machine matches similar price with 6 scale-
out machines. Therefore, the scale-out cluster consists of twenty-
four machines, each of which has two 4-core 2.3GHZ AMD
Opteron 2356 processors, 16GB RAM, and 193GB hard disk and
10Gbps Myrinet interconnections. Note that Myrinet is a high-
speed local area networking system. It has much lower protocol
overheads than Ethernet and hence can provide better throughput.
With Myrinet, the data can be accessed with less latency and the
communication overheads between each node are reduced.

2.3 Configurations on HDFS and OFS
As we mentioned in Section 1, while traditional Hadoop is
deployed with the distributed local file system HDFS, conventional
HPC architecture relies on the remote file system. On HPC cluster,
compute and data are separated and connected with high speed
interconnects, such as Ethernet and Myrinet. However, we can
still deploy Hadoop MapReduce framework with HDFS on HPC
cluster. Under the help of myHadoop [28], we easily configure
Hadoop with HDFS on the HPC cluster in our university.
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Recently, in order to achieve better performance, a Java Native
Interface (JNI) shim layer has been successfully implemented on
the HPC cluster in our university, which allows Hadoop to work
directly with remote file system OFS. Both the input and output
data can be stored in the remote file system, while the shuffle data
is still required to store in local file system of each node. OFS is
a parallel file system (PVFS) that distributes data across multiple
servers. Moreover, OFS is demonstrated to be able to offer much
better I/O performance [1] than HDFS on processing large amount
of data.

In order to achieve fair comparisons between the remote file
system and the local file system, a couple of parameters are
required to be set consistently in OFS and HDFS. In HDFS, we set
the HDFS block size to 128MB to match the setting in the current
industry clusters [45]. Similarly, OFS stores data in simple stripes
(i.e., similar as blocks in HDFS) across multiple storage servers in
order to facilitate parallel access. In order to compare OFS fairly
with HDFS, we also set the stripe size to 128MB. Typically, in cur-
rent commercial MapReduce cluster [14], the total number of map
and reduce slots is set to the number of cores. Therefore, in our
experiments, each scale-up machine has 24 map and reduce slots,
while each scale-out machine has 8 map and reduce slots in total.

For HDFS, the replication factor is set to 3 by default, which
means that each file block has three replicas. For OFS, it currently
does not support build-in replications. However, it does not affect
our measurement results since data loss never occurs in OFS
during our experiments.

2.4 Configurations for Best Performance
The scale-out architecture deploys many scale-out machines with
less powerful CPU and small RAM size. On the other hand, the
scale-up architecture has a few machines with high performance
CPU and large RAM size. In order to fully utilize the CPU and
RAM size advantages of scale-up machines, several parameters of
the scale-up Hadoop clusters are configured differently from the
conventional Hadoop clusters.
Heap size In Hadoop, each map and reduce task runs in a JVM.
The heap size is the memory allocated to each JVM for buffering
data. The map outputs are written to a circular buffer in memory,
which is determined by the heap size [14]. When the circular
buffer is closed to full, the data is spilled to the local disk, which
introduces overheads. Therefore, by increasing the heap size, it is
less likely for the data to be spilled to local disk if the heap size is
larger, leading to better performance in the shuffle phase.

The heap size is 200MB for each JVM by default in Hadoop.
In the experiments, the machines for scale-up and scale-out ma-
chines allow us to set the heap size to a much larger value than
200MB. We tune the heap size through trial and error on both
scale-up and scale-out machines. To achieve the best performance
and also avoid the out of memory error [14], we set the heap size
to 8GB per task on scale-up machines, and to 1.5GB on scale-out
machines, respectively, through trial and error.
RAM drive to place shuffle data After setting the heap size
to 8GB, we find that there is still much memory left (more than
300GB) on scale-up machines. In Hadoop, the shuffle data of the
jobs is required to store on local file system. On the HPC cluster
in our university, it enables us to use half of the total memory size
as tmpfs, which serves the same functions as RAMdisk. Therefore,
we use half of the RAM (253GB) as RAMdisk to place the shuffle
data on scale-up machines. If the shuffle data size is larger than
the available RAMdisk size, the rest of the shuffle data is stored
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Fig. 3. Map, shuffle and reduce phases in MapReduce [19].
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on the local disks. On the other hand, since the memory size is
not large on the scale-out machines (i.e., 16GB), the shuffle data
is placed on the local disks only.
Other configurations Besides the key configurations above,
there are also some other Hadoop configuration parameters (e.g.,
io.sort.mb and io.sort.spill.percent) that have significantly impact
on the performance of the applications. To select the best platforms
for applications, we need to compare the best performance of
each platform in the measurement study. Hence, we assume that
users can leverage the tools in several previous studies such
as Starfish [22] and iTuned [20], which help configure Hadoop
clusters to achieve the best performance for different applications
on different platforms. In the measurement study in Section 3, for
each application, we tune the Hadoop configuration parameters on
different platforms to achieve the best performance, based on the
instructions in Starfish [22]. As a result, we can focus on how
job characteristics of the applications affect the performance on
different platforms.

Next, let us discuss the details in a Hadoop MapReduce job.
Generally, a MapReduce job consists of map stage and reduce
stage, as shown in Figure 3. However, many researchers actually
consider that the MapReduce job has three phases by further
splitting the reduce stage to shuffle phase and reduce phase. In this
paper, we consider that there are three phases in a MapReduce job
– map phase, shuffle phase and reduce phase.

2.5 Factors of Job Execution Time in Hadoop
MapRuduce
According to [44], in the following, we break down the Hadoop
MapReduce execution flow and analyze the factors of each step in
a job, as shown in Figure 4.
• Factors for the Time Duration of Map Task
Step 1. The map tasks of a job need to read the input data for
the MapReduce execution. The time duration of this data reading
process depends on two main factors. The first one is the amount
of input data that a map task needs to process. The second is the
I/O speed of the file system.
Step 2. Each map task processes one input data block and
generates the intermediate < key,value > pairs (called map output
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data or shuffle data or reduce input data), according to the user-
defined map function. The time duration of this step depends on
two main factors. The first one is the amount of data each map
task needs to process. The second one is the speed of each node
to process the data.
For the second factor, as each node processes different jobs at a
different speed, it is difficult to generalize a speed model for every
job. However, since the map task’s function is to process the input
data and generate intermediate data, we can approximately convert
the second factor to the map output data size, i.e., shuffle data size.
• Factors for the Time Duration of Shuffle Task
Step 3. In Hadoop, only when a certain portion (called map
completion threshold) of map tasks for a job have completed, the
reduce tasks of this job are allowed to scheduled. Only after a
reduce task is scheduled, the shuffle task starts. The map outputs
are first written to the memory buffer, and then spilled to the
disk. The map outputs are partitioned corresponding to the number
of reduce tasks. All the partitions are then transmitted to the
corresponding nodes that run the reduce tasks. The time duration
of this step depends on three main factors. The first one is the
amount of data each node needs to process. The second one is
the speed of the network to transmit the data. The third one is the
buffer size.
• Factors for the Time Duration of Reduce Task
Step 4. Note that the reduce tasks begin only after the shuffle
phase completes. Each reduce task takes the transmitted data from
the shuffle phase and processes the shuffle data according to the
user-defined reduce function. As all the reduce tasks in the reduce
phase are run by the worker nodes in parallel, the time duration of
this step depends on two main factors. The first one is the amount
of data each reduce task needs to process. The second one is the
speed of each node to process the data. Similar to Step 2, we can
actually convert the second factor to the generated output data size.
Step 5. The output data of the reduce tasks is written to the
file system. The time duration of this step depends on two main
factors. The first one is the amount of output data that a reduce
task generates. The second one is the I/O speed of the file system.

3 PERFORMANCE MEASUREMENTS
In this section, we will compare the performance of data-intensive,
CPU-intensive, and I/O-intensive jobs with different input data
sizes on the four platforms as mentioned previously. The four
configurations include scale-up machines with OrangeFS , scale-
up machines with HDFS, scale-out machines with OrangeFS, and
scale-out machines with HDFS, denoted by up-OFS, up-HDFS,
out-OFS, and out-HDFS, respectively. We expect to provide a
guidance for users on how different applications benefit from
different platforms.

3.1 Measured Applications and Metrics
We classify the representative Hadoop benchmarks into three
types: data-intensive, I/O-intensive and CPU-intensive in our
performance measurement. We can roughly infer the types of
applications by the size of the input data, shuffle data and output
data. In general, data-intensive applications have large input and
shuffle data sizes and devote much processing time to I/O requests,
while I/O-intensive applications generally conduct only read/write
operations on the file system. CPU-intensive applications include
a large amount of computations such as iterative computations.
The representative Hadoop applications we measure in this section
include Wordcount, Grep, Terasort, table cross join [10], write and
read test of TestDFSIO, PiEstimator, and matrix multiplication [4].

Among them, Wordcount, Grep, Terasort and TCJ are typical
data-intensive applications since they need to read/write and pro-
cess a large amount of data. Wordcount and Grep have relatively
large input and shuffle sizes but small output size, while Terasort
generally has relatively large input, shuffle and output sizes. We
generated the input data for Wordcount, Grep, Terasort from a
big data benchamrk BigDataBench [43], which is based on the
Wikipedia datasets.

Table cross join (TCJ) is an application to cross join two tables.
It is developed in Apache PIG, which is a high-level platform
used with Hadoop. The application joins and sorts all the same
key-value pairs in two tables to a much larger table. The mappers
complete most of the cross join jobs since the mappers need to list
and sort out all the key-value pairs in the two tables. The reducers
aggregate the same key-value pairs in the map output and generate
the final output.

The write and read test of TestDFSIO are typical I/O-intensive
applications. They complete a large number of read/write oper-
ations during the map tasks and only do some calculations like
calculating the I/O rate in the reduce tasks. In TestDFSIO, each
mapper reads/writes one file. It allows us to set the number of
mappers (i.e., the number of files) and the read/write size of file,
regardless of the block size. For example, if we want to read/write
80GB data in total, we can either read/write eighty 1GB files
or forty 2GB files, though the block size is 128MB. Note that
in Hadoop, the number of reading/writing files in a job actually
affects the number of disks the job reads/writes to, that is, the
number of I/O operations on the cluster. More reading/writing
files means more I/O operations and vice versa.

The CPU-intensive applications we use in the experiments
are PiEstimator and matrix multiplication. PiEstimator uses a
statistical (quasi-Monte Carlo) method [15] to estimate the value
of Pi. Points placed at random inside of a unit square also fall
within a circle inscribed within that square with a probability equal
to the area of the circle, Pi/4. The value of Pi can be estimated
from the value of 4R where R is the ratio of the number of
points that are inside the circle to the total number of points that
are within the square. The larger the sample of points used, the
better the estimate is. The mappers generate a specified number
of sample points placed at random inside of a unit square and
then counts the number of those points that are inside a unit
circle. The reducers accumulate points counted by the mappers and
then estimates the value of Pi. Matrix multiplication (MM) in the
experiments calculates the multiplication of two square matrices.
The two matrices are decomposed to a large number of small
blocks and hence each mapper processes one block multiplication,
while the reducers aggregate all the output block results generated
in the mappers. The majority computations of the jobs are also
completed during the map phase.

We measure these metrics for different applications:
• Execution time, which is the job running time and calculated by
the job ending time minus job starting time.
•Map phase duration, which is calculated by the last mapper’s
ending time minus the first mapper’s starting time.
• Shuffle phase duration, which is defined as last shuffle task’s
ending time minus the last mapper’s ending time.
• Reduce phase duration, which is from the ending time of the last
shuffle task to the end of the job.

In the experiments, we normalize the execution time and map
phase duration by the results of up-OFS. For example, if a job
running on up-OFS and up-HDFS has an execution time of 10
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Fig. 5. Measurement results of data-intensive jobs of Wordcount.

and 15 seconds, respectively, then up-OFS on the figure is shown
as 1, while up-HDFS on the figure is shown as 1.5. Due to the
limit of local disk size, we cannot process data more than 80GB
on up-HDFS platform. Therefore, in the following measurement
results, we do not show the up-HDFS for input data size more than
80GB. On one hand, this limitation does not have any impacts
on our measurement analysis, as we are able to have meaningful
observations before the input data size is increased to 80GB.
On the other hand, we can take a first sight of the drawback
of scale-up machines from this limitation. That is, as the input
data size increases, it finally exceeds the capability of scale-up
machines. Thus, scale-up machines are not as scalable as the scale-
out machines. The number of map (reduce) waves of a job is
calculated by the number of distinct start times from all mappers
(reducers) of the job. If the number of mappers (reducers) of a job
is larger than the number of map (reduce) slots in a node, partial
mappers (reducers) are scheduled to all the slots first, forming the
first wave. After the tasks complete and some slots are available,
the second, third and subsequent waves are scheduled in sequence.
When all the mappers (reducers) have the same execution time, the
number of map (reduce) waves is equal to the number o f tasks

the number o f task slots .

3.2 Data-Intensive Applications
In this section, we show the performance evaluation of data-
intensive applications including Wordcount, Grep, Terasort, and
TCJ. Figures 5(a), 6(a), 7(a), and 8(a) show the normalized execu-
tion time of Wordcount, Grep, Terasort, and TCJ versus different
input data size, respectively. Note that in all these applications, the
number of mappers is determined by the input data size, which
is calculated by d Input data size

Block size e. Since the block size is fixed in
the experiments, the number of mappers is proportional to the
input data size. From the figures, we have several meaningful
observations.

We observe that when the input data size is small (WordCount:
0.5-16GB, Grep and TeraSort: 0.5-8GB, TCJ: 1-16 mappers), the
performance of Wordcount, Grep, Terasort, and TCJ is better on
the scale-up machines than the scale-out machines. On the con-
trary, when the input data size is large (WordCount: ≥32GB, Grep
and TeraSort: ≥16GB, TCJ: ≥ 32 mappers), the performance of

Wordcount, Grep, Terasort, and TCJ is better on the scale-out
machines than on the scale-up machines. This result is caused by
the following reasons.

First, when the input data size is small, the number of mappers
that needs to process is also small. As we mentioned, the number
of task waves is related to the total number of mappers and the
slots available on the nodes. Though the scale-out machines have
more CPU cores, small jobs (i.e., jobs that process small input
data size) on the scale-up machines can also be completed in
only one wave or a few task waves. As a result, the small jobs
benefit from the more powerful CPU resources of the scale-up
machines and hence better performance. Second, recall that the
shuffle data is copied to the reduce nodes’ memory, which is
determined by the JVM heap size. Since the scale-up machines
have larger heap sizes, it is less likely for the shuffle data to be
spilled to local disks, leading to better performance than the scale-
out machines. Third, the utilization of RAMdisk on the scale-
up machines provides a much faster shuffle data placement than
the scale-out machines. In summary, the more powerful CPU,
larger heap size, and utilization of RAMdisks guarantee the better
performance on scale-up machines than on scale-out machines,
when the input data size is small.

When the input data size is large, there are more mapper-
s/reducers in the jobs. In this situation, the scale-out machines
benefit from more task slots than the scale-up machines. There-
fore, the scale-out machines complete jobs in fewer task waves
than the scale-up machines do. Note that the more task waves will
lead to a significant longer phase duration. Therefore, even though
the scale-up machines are configured with larger heap size and
utilization of RAMdisk, the scale-out cluster still outperforms the
scale-up cluster.

Comparing HDFS and OFS, when the input data size is large,
OFS outperforms the HDFS. However, when the input data size is
small, surprisingly, the performance of HDFS is 20% (calculated
by |OFS−HDFS|

OFS ) better than OFS, although OFS can provide better
I/O performance than HDFS [1] as we mentioned. This is because
of the following reasons.
(1) The remote file system is required to be accessed through
network. Although Myrinet provides a very fast local area in-
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Fig. 6. Measurement results of data-intensive jobs of Grep.
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Fig. 7. Measurement results of data-intensive jobs of Terasort.

terconnect, there is still network latency in OFS, while HDFS
benefits from data locality and hence avoids network latency. The
network latency includes the latency generated by the overhead,
the latency used to establish a connection with the remote file
system and the latency of round-trip delay time. When the input
data size is small, the execution time is relatively small. In this
case, the network latency is not negligible comparing to the small
execution time and the performance of small size jobs is degraded
by this network latency in OFS [32].
(2) On the other hand, when the input data size is large, the
execution time becomes large and hence the network latency is
gradually amortized by the large file. In this situation, since OFS
has better I/O performance than HDFS as aforementioned, the
execution time is shorter on OFS than on HDFS.

Therefore, we observe that when the input data size is small,
the performance follows up-HDFS > up-OFS > out-HDFS >

out-OFS (> means better). When the input data size is large,
the performance of Wordcount and Grep follows out-OFS >
out-HDFS > up-OFS > up-HDFS, while Terasort follows out-
OFS>up-OFS>out-HDFS>up-HDFS. Terasort performs a little
bit different from Wordcount and Grep on up-OFS and out-HDFS
when the input data size is large. This is because the sorting
program not only has relatively a large amount of shuffle data
but also a large amount of output data, while Wordcount and Grep
have a negligible output data size compared to Terasort. It means
that with OFS, Terasort reads input data for map tasks from OFS
and writes the output of reduce task to OFS, while Wordcount and
Grep only take advantage of OFS during reading input data for
map tasks. Therefore, Terasort benefits twice from the higher I/O
rate of OFS, which results in better performance on up-OFS than
out-HDFS.

Furthermore, from Figures 5(a), 6(a), and 7(a), we observe that
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Fig. 8. Measurement results of data-intensive jobs of TCJ.

the performance of WordCount is better on scale-up machine until
the input data size of WordCount reaches 32GB (namely cross
point), while the performance of Grep and TeraSort is better on
scale-up machine until the input data size reaches 16GB. This
indicates that these three applications have different degrading
speed on scale-up and scale-out machines as the input data size
increases, although they are all data-intensive applications. This
difference for the applications is caused by the different ratio of
shu f f le data size

input data size . In our experiments, no matter how much input
data size the jobs have, the shuffle/input ratio of Wordcount,
Terasort and Grep are around 1.6, 1.0 and 0.4, respectively.
Given an input data size, with a higher shuffle to input ratio,
WordCount tends to have more shuffle data than Terasort and
Grep. Hence, WordCount can achieve more benefits from the
larger heap size and RAMdisk of scale-up machines, resulting
in a slower application performance degradation on the scale-up
machines.

Since the execution time of a job consists of the durations
in the map, shuffle and reduce phases, we then study these
broken-down durations. Figures 5(b), 6(b), 7(b), and 8(b) show
the normalized map phase duration of Wordcount, Grep, Terasort,
and TCJ, respectively. We observe a similar relationship of the
map phase duration with the job execution time due to the same
reasons. When the input data size is small (0.5-8GB), the map
phase duration is shorter on scale-up than on scale-out; when
the input data size is large (>16GB), the map phase duration
is shorter on scale-out than on scale-up. As to the comparison
between OFS and HDFS, it is also similar with the relationship
of the job execution time due to the same reasons. We see that
when the input data size range is 0.5-8GB, the map phase duration
of these jobs are 10-50% shorter on HDFS than on OFS. When
the input data size is larger than 16GB, the map phase duration
is 10-40% shorter on OFS than on HDFS, no matter if they are
configured with the scale-up or scale-out cluster.

Figures 5(c), 6(c), 7(c) and 8(c) show the shuffle phase dura-
tion of Wordcount, Grep, Terasort, and TCJ, respectively. We see
that the shuffle phase duration is always much shorter on scale-up
machines than on scale-out machines. This is because of the larger

heap size and RAMdisk of scale-up machines as aforementioned.
Figures 5(d), 6(d), 7(d), and 8(d) show the reduce phase

duration of Wordcount, Grep, Terasort, and TCJ, respectively. In
Wordcount and Grep, the reduce phase aggregates the map outputs
which have small size and hence the reduce phase duration is
very short. Therefore, the reduce phase duration of Wordcount
and Grep is around a few seconds and there is not any specific
relationship of the reduce phase duration. On the other hand,
the reduce phase of Terasort needs to sort the map outputs
which has the same size as the input data, resulting in a long
reduce phase duration (increasing from 5 to 1800 seconds as
the input data size increases. The number of task waves of
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Fig. 9. Cross point versus shuffle/input ratio.

the reduce slots on
scale-out machines is
fewer than on scale-up
machines and hence
the reduce phase du-
ration of Terasort per-
forms similarly as the
execution time and the
map phase duration.
That is, when the input
data size is small (0.5-8GB), the reduce phase duration is shorter
on scale-up than on scale-out; when the input data size is large
(>16GB), the reduce phase duration is shorter on scale-out than
on scale-up. As to TCJ, its reduce phase is similar to the reduce
phase of TeraSort. When the number of mappers in TCJ increases,
the output data size becomes larger. Therefore, we see from Figure
8(d) that the reduce phase duration of TCJ on scale-out machines
is smaller when the number of mappers is large; when the number
of mappers is small, the reduce phase duration is similar on the
scale-up and scale-out clusters.

We see neither OFS nor HDFS affects the reduce phase
duration of Wordcount and Grep. This is because the reduce phase
duration of these two applications only lasts for a short time, which
is hardly affected by the file system. For Terasort, the reduce phase
duration is 20-65% shorter on HDFS than on OFS when the input
data size is small (0.5-8GB) on either the scale-up or scale-out
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Fig. 10. Measurement results of I/O-intensive write test (80GB) of TestDFSIO.
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Fig. 11. Measurement results of I/O-intensive read test (80GB) of TestDFSIO.

cluster. When the input data size is large (>16GB), it is 20-70%
shorter on OFS than on HDFS, no matter if they are configured
with the scale-up or scale-out cluster. This is because Terasort has
the same output data size as the input data size. When the input
data size is large, the output data size is also large. Therefore, as
aforementioned, when the input data size is large, OFS provides
better I/O performance than HDFS and can complete the writing
of output data faster; when the input data size is small, HDFS
outperforms OFS because of the network latency on OFS.

In this section, WordCount, Grep, and Terasort prove that the
shuffle data size does impact the cross point (and hence platform
selection). Next, we varied the shuffle data size of the same
application to further demonstrate this observation. We ran a set of
Grep measurement experiments by varying the regular expressions
to grep. In this way, the shuffle/input ratio of Grep ranged from

0.0 to 8.0. We aim to explore the cross points between scale-up
and scale-out for Grep with different shuffle/input ratios. Figure 9
shows the cross point versus the shuffle/input ratio for Grep. We
see that as the shuffle/input ratio increases, the cross point also
increases. Grep can achieve more benefits from scale-up machines
as the shuffle data size increases, which demonstrates that the
shuffle data size is one of the key factors in platform selection.

3.3 I/O-Intensive Applications
In this section, we measure the performance of a relatively large
data size (80GB). Figures 10(a) and 11(a) show the normalized
execution time of TestDFSIO reading/writing 80GB data versus
different number of files, respectively. In these reading/writing
tests, the size of each file is equal to 80GB

the number o f f iles . More
reading/writing files means more I/O operations and vice versa.
We see that when the number of files is large, the performance
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of I/O-intensive applications (both read and write) is better on
scale-out machines than on scale-up machines, no matter if they
use HDFS or OFS. For HDFS, the I/O rate of local disks is
similar on both scale-up and scale-out machines. However, scale-
out machines read/write data from/to twelve datanodes simultane-
ously, while scale-up machines read/write data from/to only two
datanodes. Therefore, scale-up machines read/write to fewer disks
in parallel, which limits their performance. As to OFS, it allows
CPU to build up multiple communications with remote storage
servers simultaneously and hence read/write files in parallel. As
a result, the scale-out machines that have more CPU cores can
read/write more files from/to OFS at the same time. On the other
hand, since the scale-up machines have fewer CPU cores, they
build up fewer communications with OFS and hence read/write
fewer files from/to OFS. Therefore, for both HDFS and OFS, the
scale-out cluster outperforms the scale-up cluster.

When the number of files is small, the performance is similar
on scale-up machines and scale-out machines. This is because
when there are only a small number of files, both scale-up and
scale-out machines read/write files from/to only a small number
of disk devices simultaneously, which cannot take advantage of
the larger number of disk devices in the scale-out machines. In
this case, the factor that affects the performance is mainly the disk
rate. Since the disk rate is similar on the scale-up and scale-out
machines, no matter if they use HDFS or OFS, the execution times
on scale-up and scale-out machines are similar to each other.

Figures 10(b), 10(c) and 10(d) and Figures 11(b), 11(c) and
11(d) show the map, shuffle and reduce phase durations of the
write test and the read test of 80GB data, respectively. we see that
in both the write and read tests, the map phase duration exhibits
a similar performance trends as the execution time. The shuffle
and reduce phase durations of both tests are quite small (<8s),
and hence they exhibit no specific relationship. Comparing OFS
and HDFS in the scale-up and scale-out clusters, the map phase
duration is shorter on OFS than on HDFS for reading/writing
80GB. Since the shuffle and reduce phase durations are very small,
they are not affected by using either OFS or HDFS.

3.4 CPU-Intensive Applications
Figure 12(a) shows the execution time of PiEstimator versus the
number of sample points. PiEstimator has 80 mappers in this ex-
periment. Note that as the number of sample points increases, there
are more calculations in the experiments because the application
needs to calculate the location of each point to determine whether
it is in the unit circle or not, which results in an increase of the
execution time of each mapper. Moreover, as the number of sample
points increases, each mapper needs to process an input file size
ranging from (2-20000)KB.

When the number of sample points is small (105-107) (i.e.,
each mapper conducts fewer computations and can be completed
in a shorter time), we see that the scale-up machines outperform
the scale-out machines. However, when the number of sample
points is large (> 107) (i.e., each mapper conducts more com-
putations and requires more time to complete), we see that the
scale-out machines perform better than the scale-up machines.
Although the scale-out machines benefit from more CPU cores
to handle the mappers, the scale-up machines still outperform the
scale-out machines when the number of sample points is small.
This is because of the L1 cache size difference of CPUs on the
scale-up and scale-out machines. When the number of sample
points is small, the input data size (2-200KB) is as small as the

CPU L1 cache size and hence the CPUs can process all the data
within the fastest cache. When all the data is placed in L1 cache,
the CPUs on scale-up machines can be fully utilized. Therefore,
the full utilization of CPUs on scale-up machines compensates
the disadvantage of fewer CPU cores. When the amount of
computations is large, the input data size is much larger than the
L1 cache size, which means that CPU cannot maintain the fastest
speed, resulting in lower performance. Then, the disadvantage of
fewer map slots on scale-up machines cannot be compensated. As
a result, the execution time on scale-up machines is higher than
on scale-out machines when the amount of computations is large.

Comparing the performance of OFS and HDFS, we see that
OFS always performs worse than HDFS. This is because each
mapper handles a small file size in PiEstimator. As we mentioned
previously, when the input data size is small, the network latency
is non-negligible in OFS. In contrast, HDFS benefits from high
data locality and avoids the network latency. Therefore, HDFS
outperforms OFS for small input data sizes.

Figures 12(b), 12(c) and 12(d) show the map, shuffle and
reduce phase durations of PiEstimator, respectively. Since the
map phase of PiEstimator completes the majority of the work
in the jobs (determining whether the sample points are in the
unit circle or not), while the shuffle phase only collects the
statistics and the reduce phase simply derives Pi from the map
results, we see that the map phase duration exhibits a similar
performance trend as the execution time. The shuffle and reduce
phase durations of PiEstimator are quite small (<5s), and they
exhibit no specific relationships on either scale-up or scale-out
machines. Comparing OFS and HDFS, OFS leads to 50− 80%
longer map phase duration. This is caused by the non-negligible
network latency for processing a small data size. As to the shuffle
and reduce phases, since their durations are very small, whether
using OFS or HDFS does not affect the durations of these two
phases much.

Figure 13(a) shows the normalized execution time of MM
versus different number of mappers. Note that more mappers
means that the matrix’s size is larger. When the number of mappers
is small (1-16), we see that scale-up machines perform better
because of their better CPUs as indicated previously. When the
number of mappers is large (>16), scale-out machines perform
better since there are fewer map slots on scale-up machines and
hence more task waves. In spite of the better CPU on scale-up
machines, the performance is degraded because of the more task
waves of MM.

Figures 13(b), 13(c), and 13(d) show the map, shuffle, and
reduce phase durations of MM versus the number of mappers. We
see that the map phase duration has similar results as the execution
time because the majority of the work of MM is completed in
the map phase. The shuffle phase duration is shorter on scale-
up machines than on scale-out machines because the scale-up
machines handle shuffle data more quickly as explained previously
for the data-intensive jobs. The reduce phase of MM aggregates
the results generated in map phase. As the size of matrix (hence
the number of mappers) increases, the output data size of MM
becomes larger. We see that when the number of mappers is large,
the reduce phase duration on scale-out machines becomes smaller
because the scale-out machines can write the output data to more
disk devices simultaneously, as explained previously for the I/O-
intensive jobs. When the number of mappers is small, we see that
the reduce phase duration is similar on the scale-up and scale-out
clusters. This is because the output data size is small and hence
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Fig. 12. Measurement results of CPU-intensive jobs of PiEstimator.
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Fig. 13. Measurement results of CPU-intensive jobs of MM.

it can be written in a few blocks, which cannot take advantage of
the large number of disk devices of the scale-out machines.

Comparing OFS and HDFS for MM, when the number of
mappers is small, it is better to use HDFS. On the contrary, as
the number of mappers increases, it becomes better to use OFS
rather than HDFS. The reason is that OFS can provide more
powerful I/O performance than HDFS, as explained for the data-
intensive applications previously. However, when the input data
size is small, the network latency is non-negligible and degrades
the performance of OFS.

4 DISCUSSIONS

In this section, we first summarize the measurement results and
analysis in Section 3. Then we discuss the potential implications

of our measurement results on guiding the users who would like
to configure Hadoop in the cloud environments.

4.1 Summary of Results

We can make the following conclusions for data-intensive, CPU-
intensive and I/O-intensive applications.
Data-intensive applications:
(1) When the input data size is small, the performance relationship
is up-HDFS>up-OFS>out-HDFS>out-OFS.
(2) When the input data size is large, the performance of ap-
plications with a small output data size (e.g., Wordcount and
Grep) follows out-OFS>out-HDFS>up-OFS>up-HDFS, while
the performance of applications with a large output data size (e.g.,
Terasort) follows out-OFS>up-OFS>out-HDFS>up-HDFS.
I/O-intensive applications:
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(1) When the number of reading/writing files is small, the perfor-
mance relationship is up-OFS>out-OFS>up-HDFS > out-HDFS.
(2) When the number of reading/writing files is large and the total
file size is large (e.g., 80GB), the performance relationship is out-
OFS>up-OFS>out-HDFS>up-HDFS.
CPU-intensive applications:
(1) When both the amount of computations and the input file size
are small, the performance relationship is up-HDFS > out-HDFS
> up-OFS>out-OFS.
(2) When both the amount of computations and the input file
size are large (e.g., MM), the performance relationship is out-
OFS>out-HDFS>up-OFS>up-HDFS. On the other hand, when
the amount of computations is large but the input file size is
small (e.g., PiEstimator), the performance relationship is out-
HDFS>up-HDFS>out-OFS>up-OFS.

Therefore, for a specific type of applications, users can deter-
mine which platform should be use to execute the applications
to achieve the best performance. For example, when a data-
intensive job with input data size 100GB is submitted, based on
our conclusions, the job should run on the out-OFS platform. We
expect that our measurement results can help users to select the
most appropriate platforms for different applications with different
characteristics on HPC clusters.

4.2 The Guidance of Hadoop Configurations in Cloud
Environments

Although the the performance measurements in our paper were
conducted on the Hadoop configurations on a HPC cluster, our
performance measurement results may also provide guidance for
the users who would like to configure Hadoop in the cloud
environments.

Take Amazon EC2 [2] as an example. Users are able to
configure their Hadoop MapReduce clusters with different types
of instances on Amazon EC2. Our performance measurement
results can first guide the users on how to select the instances
for their Hadoop MapReduce cluster for better performance based
on the workloads they have. For example, if the workloads are
data-intensive and most of the jobs in the workloads have large
input data size, it is better for them to select a bunch of scale-out
machines. For some CPU-intensive workloads with small input
data size, selecting several scale-up instances instead of many
scale-out instances may be a better choice.

Another guidance of our paper is on the file system config-
uration of Hadoop. We can guide the users on whether Hadoop
with HDFS or Hadoop with remote file system can provide
better performance. Data is generally stored in Amazon Simple
Storage Service (Amazon S3) [3], which is a highly-scalable
remote storage. In addition to Amazon S3, each instance on
Amazon EC2 also comes with a storage. However, the storage
on the instances is small, which may not be suitable for large-size
applications. Besides, in the cloud environment, users need to first
transfer the data from Amazon S3 to the storage on each instance,
which is costly and takes time. In this paper, our performance
measurement results show that the users may not need to use
the traditional Hadoop with HDFS configuration. For example,
users may achieve better performance on their Hadoop clusters
by directly configuring Hadoop with S3 for workloads that are
data-intensive and have large input data size. For some CPU-
intensive workloads with small input data size, configuring the
traditional Hadoop with HDFS may be a better choice. We leave

the exploration of configuring Hadoop with remote storage in
cloud environments as the future work.

5 PERFORMANCE PREDICTION MODEL FOR BEST
PLATFORM SELECTION

In this section, we aim to develop a performance prediction model
to predict the performance of different applications based on their
characteristics, which helps users select the best platforms for their
applications.

Recall in Section 2 that a MapReduce job consists of map,
shuffle, and reduce phases. In this section, in order to predict the
performance, we revisit the basic principle of MapReduce. First,
we would like to elaborate the factors that impact the performance
of a MapReduce job (i.e., the job execution time). Then we analyze
the impacts from different machines (i.e., scale-up and scale-out
machines) and different storages (i.e., HDFS and OFS) on the job
execution time.

5.1 Proposed Prediction Model

The execution time of a MapReduce job is impacted by the time
duration of the five steps in Section 2.5, as shown in Figure 4. Due
to the parallel feature of MapReduce, shuffle phase runs highly
overlap with map phase. Therefore, Step 3 only contributes part of
its time duration to the job execution time.

Figure 4 indicates which parts the four metrics (i.e., execution
time, map phase duration, shuffle phase duration and reduce
phase duration in Section 3) represent. We see that the shuffle
phase duration is actually slightly different from the time duration
of Step 3. Let us denote MPD, SPD, and RPD as the map
phase duration, shuffle phase duration, and reduce phase duration,
respectively. We can express the job execution time ET as follows,

ET = MPD+SPD+RPD. (1)

Let us denote tr, tmap, tshu, tred , tw as the time durations of input
data reading, execution of map tasks, shuffle data transferring,
execution of reduce tasks, and output data writing, respectively. A
simple “rule-of-thumb” [24], [25], [38], [44] states that the time
duration of each step is proportional to the amount of processed
data. Let us denote the input data size, shuffle data size, and output
data size as IS, SS, and OS, respectively. Suppose the job has M
map tasks and R reduce tasks. Then, based on the factors that
affect each part, we can derive the time duration of each step as
follows,

tr = α ∗ IS
M

+d1,

tshu = p∗SS,

tw = β ∗ OS
R

+d2,

(2)

where α and β are the speed coefficients of the disk I/O. d1 and d2
are constants, which could be the network setup delay for remote
file transfer. p is the speed coefficient of the network. The time
durations of Step 2 and Step 4 are given by

tmap = a∗ IS
M

,

tred = b∗ SS
R
,

(3)

where a and b are the coefficients that reflect the speed of each
node to process the data. As mentioned above, to generalize the



12

model for different jobs, we can approximately convert a and b to
shuffle data size. Therefore, we have

tmap = δ ∗ SS
M
∗ IS

M
,

tred = θ ∗ OS
R
∗ SS

R
,

(4)

where δ and θ are the speed coefficients of each node to process
the data.

In additional to the data size, we also need to consider the
number of waves (mentioned in Section 3.1) to estimate the job
execution time [24]. Suppose the entire cluster has N machines,
each of which contains m map slots and r reduce slots. Therefore,
the map tasks run in d M

N∗me waves, while the reduce tasks run in
d R

N∗r e waves. We then can derive the job execution time ET as
follows,

ET = MPD+SPD+RPD

= (tr + tmap)∗d
M

N ∗m
e+η ∗ tshu +(tred + tw)∗d

R
N ∗ r

e, (5)

where η is the coefficients that describes how much time duration
Step 3 contributes to the execution time. Substituting Equations
(2) and (4) into (5), we have the execution time ET prediction
model as follows,

ET = d M
N ∗m

e∗ (α ∗ IS
M

+d1 +δ ∗ SS
M
∗ IS

M
)

+η ∗ p∗SS+ d R
N ∗ r

e∗ (θ ∗ OS
R
∗ SS

R
+β ∗ OS

R
+d2). (6)

Now let us analyze the prediction model in the above. In a
given cluster, the number of machines (i.e., N), the number map
and reduce slots (i.e., m and r) are constant. For a given job with
certain characteristics running on this cluster, IS, SS, OS, M, and R
are all known parameters. Therefore, in Equation (6), the unknown
coefficients are actually d1, d2, δ ,θ , η , p, α and β . Notice that
different platforms result in different sets of coefficients. To get the
coefficients for different platforms, we can use linear regression
[7] to train the model.

Next, we briefly discuss how different machines (i.e., scale-up
and scale-out machines) and different storages (i.e., HDFS and
OFS) impact the coefficients in the prediction model.
• Scale-up machines and scale-out machines. One difference be-
tween scale-up machines and scale-out machines is the difference
of CPU and memory capacity. This difference between different
machines certainly results in different δ and θ . As scale-up
machines have more powerful CPU and memory, we would expect
that with scale-up machines, δ and θ are smaller.
Besides, due to the memory and network configuration differ-
ences, scale-up machines and scale-out machines also lead to
different η and p. Similarly, it is expected to have smaller η and
p with scale-up machines.
Moreover, since the scale-up machines and scale-out machines
have different number of CPU cores, the number of map and
reduce slots m and r are different on different machines.
•HDFS and OFS. As we stated above in Section 2.5, the file
system affects the speed of input data reading and the output
data writing. Therefore, α and β are impacted by the selection
of HDFS and OFS. From the measurement results in Section 3, it
is expected that with OFS, α and β are smaller.

In summary, we present a performance prediction model to
help users select their best platforms based on the job character-
istics. Specifically, we derive a simple linear model based on the
job characteristics to predict the performance. In this model, we

leverage two widely used assumptions in many previous studies.
The first assumption is that the time duration of each step is
proportional to the amount of processed data [24], [25], [38], [44].
The second assumption is that the tasks tends to finish in waves
[25], [27], [46]. Several previous studies have presented more
complex performance models, such as Starfish [22], MRPerf [42],
iTuned [20] and the analytic model in [34]. However, in this paper,
our goal is not to accurately predict the job execution time of each
job. Instead, we aim to propose a simple mathematical model to
let users quickly estimate the performance difference of their jobs
between different platforms and select the best platforms. In other
words, we expect to propose a model to find out which platforms
are the best for different jobs.

5.2 Performance Evaluation
In this section, we used the Facebook synthesized workload FB-
2009 [18] to evaluate the performance of our prediction model,
focusing on whether users can utilize our prediction model to
select the best platforms. FB-2009 is a workload trace that records
the characteristics of jobs running in production clusters. The trace
contains the job characteristics such as job submission time, input
data size, shuffle data size, and output data size. According to
previous studies [17], [18], The jobs in FB-2009 are very diverse
and have input data size ranging from KB to TB, which ensures
sufficient datasets for every platform to evaluate the performance
of our prediction model.

Based on FB-2009, we generated the jobs correspondingly
[18] and reran all the jobs in FB-2009 one by one on each of the
four platforms. The configurations of the four platforms are the
same as the configurations in Section 2. After running the jobs,
we collected the Hadoop logs for all the jobs, which include the
job execution time, the number of map and reduce tasks, and input,
shuffle and output data sizes. We used the logs as the datasets and
the features (job characteristics) of every job include d M

N∗me ∗
IS
M ,

d M
N∗me, d

M
N∗me∗

SS
M ∗

IS
M , SS, d R

N∗r e∗
OS
R ∗

SS
R , d R

N∗r e∗
OS
R , and d R

N∗r e,
as shown in Equation 6.

We can formulate the platform selection problem as two
machine learning problems, regression and classification [39].

TABLE 2
Coefficients of different platforms.

Platforms λ

up-OFS 1.00
up-HDFS 5e10
out-OFS 93690.87

out-HDFS 5e10

In regression, we leverage the model in Equation (6) to predict
the execution times of the application on every platform and then
select the one with the smallest execution time. Specifically, we
utilize the Ridge Regression (RR) [23], which is a widely used
linear regression model with regularization when the features have
high collinearity. The ridge regression uses a parameter λ to
control the regularization to avoid overfitting problem. The ridge
regression is used when the features have high collinearity. In this
case, d M

N∗me ∗
IS
M and d M

N∗me are highly collinear, as IS
M represents

the block size of the file systems (i.e., 128MB). It is worth
mentioning that each λ is corresponding to one linear model. To
choose the best λ value (the best model), we used 10-fold-cross-
validation approach [6] to train the FB-2009 trace. Specifically,
we first randomly divided the FB-2009 trace into 10 folds, among
which 9 folds are the training dataset and the remaining 1 fold
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Fig. 14. Prediction accuracy in selecting the best platforms for different
applications.

is the testing dataset. For a λ , we repeated this process for 10
times, with each fold of data used once as the testing dataset. Each
time we computed the mean square error (MSE) [8] of the trained
model on the one fold of testing dataset (in total 10 MSE results
for 10 folds). We then took the average of 10 MSEs as the MSE
of the λ and we chose the best λ that gives the smallest MSE. The
regularization parameter λ for each platform are listed in Table 2.
We then applied the trained model for each platform on the FB-
2009 trace. We computed the execution time of each job on each
platform and selected the platform with the smallest execution
time. The prediction accuracy of the best platform is 89.23%.

In classification, instead of using Equation (6) to calculate
the execution time, we use the equation as a reference to imply
that what features significantly affect the final performance of
an application and hence the platform selection. Then, we use
the Support Vector Machine (SVM) classifier with the nonlinear
RBF kernel [26], which takes the features of each application
in Equation (6) as inputs and predicts which class (i.e., which
platform) the application should run on. The RBF model have two
parameters γ and C to control the regularization to avoid over-
fitting problem. As the RR, we use the 10-fold-cross-validation
approach as introduced above to select the best γ and C with the
highest prediction accuracy. Using SVM, we can get a prediction
accuracy of 94.16%, which is higher than the prediction accuracy
in the regression model.

Further, we applied the trained models to the measurement
results in Section 3 to see how the models perform and whether the
models overfit the FB-2009 dataset. Figure 14 shows the accuracy
of our models in selecting the best platforms for different appli-
cations. We see from the figure that Wordcount, Grep, Terasort,
TestDFSIO, MM and TCJ all achieve high accuracies in selecting
the best platforms (more than 87% using RR and more than 89%
using SVM), while the CPU-intensive application PiEstimator
only achieves an accuracy around 70%. This is because of the
current artifact of OFS – when transferring extremely small files
(e.g., smaller than 10KB), OFS suffers from abnormal latency, as
explained in Section 3.4.

6 RELATED WORK

File system. MapReduce [19] is a popular framework that per-
forms parallel computations on big data. Many HPC sites [1]
have extended their clusters to support Hadoop MapReduce. File
systems are an essential component in the MapReduce and HPC
clusters. Tantisiriroj et al. [41] integrated PVFS into Hadoop and
compared its performance with HDFS. Other works [11], [13]
successfully implement HPC file systems (GPFS and Lustre) in
Hadoop. Meza et al. [35] provides a large scale study of flash
memory based solid state drives (SSD) in data center. Chen et
al. [16] evaluated the performance of network file system version

4 with different features. Our work is different from the above
work in that we combine HDFS and OFS with scale-up and
scale-out machines and measure the application performance on
different platforms in order to provide guidance on selecting the
most appropriate platform to run a job based on its characteristics.
Workload characterization. In order to improve the performance
of MapReduce clusters, characterizing the workload features is
important since cluster provisioning, configuring and managing
is essential for a cluster. Studying the workloads can provide
general insights about the performance of clusters. Chen et al.
[17] characterized new MapReduce workloads, which are driven
in part by interactive analysis and with heavy use of query-like
programming frameworks such as Hive on top of MapReduce.
Elmeleegy [21] studied the workloads from Yahoo! Hadoop clus-
ter and revealed that the majority of jobs are short and have only
small number of tasks. Ren et al. [37] conducted a case study
of the jobs and tasks of the workload from a commodity Hadoop
cluster Taobao. Kavulya et al. [27] analyzed MapReduce logs from
the M45 supercomputing cluster. Appuswamy et al. [14] measured
the performance of a set of representative Hadoop applications
on scale-up and scale-out machines. All of these works provide
guidance on how to characterize different applications. Our work
is different from the above works since we configure scale-up
and scale-out machines for Hadoop with HDFS and a remote file
system and measure the performance difference among all these
platforms. From the results, we can select the best platform for
different jobs with different characteristics.
Scale-up or scale-out. Whether scale-up or scale-out architecture
is not only an attracted research area in MapReduce, but also
exists in some other research ares. GraphChi [29], a work focusing
on graph computations, advocates processing big data in a single
machine. Michael et al. [36] investigated scale-up versus scale-
out in an emerging search application. However, they found that
the scale-out solutions provide better price/performance ratio,
although at the cost of increasing management complexity.

7 CONCLUSION

In this paper, we have conducted performance measurement study
of data-intensive, I/O-intensive and CPU-intensive applications on
four HPC-based Hadoop platforms: scale-up cluster with OFS,
scale-up cluster with HDFS, scale-out cluster with OFS and scale-
out cluster with HDFS. We have conducted a thorough analysis on
the measurement results and identified the best platform for each
type of applications with certain characteristics, which provides a
guidance on selecting platforms to run different applications. We
confirm that replacing HDFS with OFS for Hadoop is feasible
and we found that OFS outperforms HDFS when an application
processes a large data size. Also, an application processing a small
data size should be considered to be executed on the scale-up
cluster. We expect that our measurement results can help users to
select the most appropriate platforms for different applications
with different characteristics. We also propose a performance
prediction model to help users select the best platforms for
different applications. Our evaluation using a Facebook workload
trace demonstrates the effectiveness of our prediction model.
Additionally, our results can also provide potential guidance on
instance selection and file system selection for the users who
would like to configure Hadoop in the cloud environments that
provide similar file system architectures as HPC cluster. In the
future, we plan to study the in-memory computing systems such
as Spark on HPC clusters. Moreover, based on the conclusions in
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this paper, we plan to develop an adaptive hybrid platform that
contains both scale-up and scale-out machines, and HDFS and
OFS. It can automatically determine the best platform for a given
application with certain characteristics.
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