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An Exploration of Designing a Hybrid
Scale-Up/Out Hadoop Architecture Based on

Performance Measurements
Zhuozhao Li, Haiying Shen, Senior Member, IEEE, Walter Ligon, and Jeffrey Denton

Abstract—Scale-up machines perform better for jobs with small and median (KB, MB) data sizes,
while scale-out machines perform better for jobs with large (GB, TB) data size. Since a workload usually consists of jobs with different
data size levels, we propose building a hybrid Hadoop architecture that includes both scale-up and scale-out machines, which however
is not trivial. The first challenge is workload data storage. Thousands of small data size jobs in a workload may overload the limited
local disks of scale-up machines. Jobs from scale-up and scale-out machines may both request the same set of data, which leads
to data transmission between the machines. The second challenge is to automatically schedule jobs to either scale-up or scale-out
cluster to achieve the best performance. We conduct a thorough performance measurement of different applications on scale-up and
scale-out clusters, configured with Hadoop Distributed File System (HDFS) and a remote file system (i.e., OFS), respectively. We find
that using OFS rather than HDFS can solve the data storage challenge. Also, we identify the factors that determine the performance
differences on the scale-up and scale-out clusters and their cross points to make the choice. Accordingly, we design and implement
the hybrid scale-up/out Hadoop architecture. Our trace-driven experimental results show that our hybrid architecture outperforms
both the traditional Hadoop architecture with HDFS and with OFS in terms of job completion time, throughput and job failure rate.
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1 INTRODUCTION

MapReduce [17] is a framework designed to process a large
amount of data in the parallel and distributed manner on
a cluster of computing nodes. Hadoop, as a popular open
source implementation of MapReduce, has been deployed
in many large companies such as Facebook, Google and
Yahoo!. In the last decade, the amount of computation
and data increases exponentially [9]. This trend poses a
formidable challenge of high performance on MapReduce
and motivates many researchers to explore to improve the
performance from different aspects such as job scheduling
[3, 5, 21, 22], short jobs performance optimization [19] and
intermediate data shuffling [7, 15, 16, 34].

A common sense in the IT community is that a larger
Hadoop cluster of machines is always better for processing
big data, i.e., a very large volume of data in terabytes,
petabytes or exabytes. Recent studies indicate that most
jobs in the production workloads (e.g., at Facebook [14] and
Microsoft [31] clusters) usually have input/shuffle/output
sizes in the MB to GB range. These production clusters with
many small jobs suffer from poor performance because the
existing Hadoop MapReduce clusters were not originally
designed for short and latency-sensitive jobs [19]. Therefore,
optimizing the performance of short jobs is important. To
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process the current production workloads, Appuswamy et
al. [10] claimed that scale-up machines is a better option
than scale-out machines. Scale-up is vertical scaling, which
means adding more resources to the nodes of a system,
typically stronger processors and RAM. Scale-out is hori-
zontal scaling, which refers to adding more nodes with few
processors and RAM to a system [10].

A real-world workload usually consists many jobs han-
dling diverse data size levels and computations. Also, in
this big data era, the data size handled by jobs has been
increasingly larger. We calculated the Cumulative Distribu-
tion Function (CDF) of the data sizes of more than 6000
jobs in the Facebook synthesized workload trace FB-2009
[13] and show the results in Figure 3. We see that the input
data size ranges from KB to TB. Specifically, 40% of the
jobs process less than 1MB small datasets, 49% of the jobs
process 1MB to 30GB median datasets, and the rest 11%
of the jobs process more than 30GB large datasets. Such a
workload requires both scale-up and scale-out machines to
handle datasets with different size levels. Therefore, it is not
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practical to simply decide to use scale-up machines or scale-
out machines for a workload.

Motivated by these observations, we see the great po-
tential to design a cost-efficient Hadoop architecture with
coexistence of both scale-up and scale-out machines to im-
prove the performance of real-world workloads. That is, we
aim to improve the cluster performance without spending
more money. In such a hybrid cluster, we utilize the features
of both scale-up machines and scale-out machines. Scale-up
machines have more powerful CPU and memory but fewer
CPU cores, and hence are better for small jobs but not large
jobs. On the other hand, scale-out machines have more CPU
cores, and hence it is more beneficial to process a larger
amount of data than scale-up machines.

However, designing a hybrid cluster is non-trivial due
to two main challenges.
• Proper data storage to enable both scale-up machines
and scale-out machines efficiently access data needed. The
Facebook trace shows that thousands of jobs (85%) handle
small or median data size levels. Since majority jobs are
better to run in scale-up machines, these jobs may overload
the local disks of scale-up machines. Also, both scale-up
and scale-out machines may request the same workload
dataset, which leads to data transmission between the
machines and may degrade the application performance.
• Adaptively scheduling a job to either scale-up cluster
or scale-out cluster that benefits the job the most. Simply
referring to job input data size may not be sufficient and
there may exist other factors that determine the performance
difference between scale-up and scale-out clusters.

In this paper, we aim to investigate the feasibility of
designing such a hybrid architecture and start the initial ex-
ploration. Hadoop Distributed File System (HDFS) is the file
system designed to closely work with Hadoop MapReduce
(Figure 1). To handle the first challenge, we could let HDFS
consider both scale-out and scale-up machines equally as
datanodes for data distribution. However, in this case, scale-
up machines must frequently access data in scale-out ma-
chines, which not only degrades their job performance but
also consumes their bandwidth. We then explore handling
this challenge by using a remote dedicated storage system
(e.g., OrangeFS [6] (Figure 2). The dedicated storage offloads
I/O load from the compute nodes and enables the data
sharing between scale-up machines and scale-out machines
easily. To handle the second challenge, we need to decide the
cross points of different jobs. As shown in Figure 4, cross point
is the size of input data for a job, at which the scale-up and
scale-out clusters provide similar performance for the job,
and if the actual size is higher or lower than the cross point,
one cluster provides better performance. We found that the
cross point of a job is determined by multiple factors, such

as shuffle/input data size ratio and output data size.
To this end, by taking advantage of the Clemson Uni-

versity Palmetto HPC cluster that successfully configured
Hadoop by replacing the local HDFS with the remote O-
rangeFS (OFS), we configured four architectures as shown
in Table 1: scale-up machines with OFS (denoted by up-
OFS), scale-up machines with HDFS (denoted by up-HDFS),
scale-out machines with OFS (denoted by out-OFS), and
scale-out machines with HDFS (denoted by out-HDFS). We
then measure the performance of representative Hadoop
applications (i.e., shuffle-intensive and map-intensive) on
these architectures. Through the measurement, we aim to
see if the use of a remote file system can provide efficient
data storage as we expected and whether it brings about
any side-effect to scale-up cluster or scale-out cluster. More
importantly, we study the benefits gained from scale-up
cluster and scale-out cluster, respectively, for different jobs,
based on which we can decide where to run a given job.

Through our performance measurement, we confirm the
benefits of the remote file system, identify the factors (i.e.,
shuffle/input ratio, and output data size) that determine the
performance differences on the scale-up and scale-out clus-
ters and their cross points to make the choice. Accordingly,
we design a hybrid scale-up/out Hadoop architecture. In
this architecture, different jobs in a workload can be execut-
ed on either scale-up or scale-out cluster that benefits them
the most, thus achieving higher workload performance. In
this paper, we use execution time to evaluate application
performance. Our contributions are summarized below:
1. We have identified comparable scale-up cluster and scale-
out cluster, built four architectures shown in Table 1 and op-
timized their configurations to achieve the best performance
by trial of experiments.
2. We have conducted thorough experiments of different
applications on the four architectures with different input
data sizes and provided an insightful analysis on the per-
formance.
3. Based on our measurement analysis, we design a sched-
uler, which helps decide whether to execute a job on the
scale-up or scale-out cluster to gain the most benefit. We
then design a hybrid scale-up/out Hadoop architecture that
incorporates this scheduler and uses a remote file system.
4. We have conducted experiments driven by the Facebook
synthesized workload trace, which show that our hybrid
architecture outperforms both the traditional Hadoop
architecture with HDFS and with OFS in terms of the
execution time, throughput and success rate of jobs.

As far as we know, our work is the first that i) studies the
application performance on the four architectures in Table
1, ii) proposes the idea of a hybrid scale-up/out Hadoop
architecture to better serve a real-world workload with jobs
handling diverse data size levels and computations, and
iii) introduces a method to build the hybrid scale-up/out
Hadoop architecture. Our new architecture is only an initial
design and has many aspects to improve but we expect it
can stimulate many researches on this topic.

The remainder of this paper is organized as follows.
Section 2 describes the configurations of scale-up and scale-
out machines for the HPC-based Hadoop. Section 3 presents
the performance measurements for different types of appli-
cations on the four architectures. Section 4 presents our pro-
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TABLE 1: Four architectures in our measurement.
Scale-up Scale-out

OFS up-OFS out-OFS
HDFS up-HDFS out-HDFS

posed hybrid scale-up/out Hadoop architecture. Section 5
presents the trace-driven experimental results of our archi-
tecture compared with the traditional Hadoop. Section 6
gives an overview of the related work. Section 7 concludes
the paper with remarks on our future work.

2 OPTIMIZATION OF THE HPC-BASED HADOOP
MAPREDUCE CONFIGURATIONS

In this section, we introduce the details on how we config-
ured Hadoop MapReduce on the Clemson Palmetto HPC
cluster, which is ranked as the top five fastest supercom-
puters at public universities in United States and the 66th

fastest supercomputers globally [4]. The HPC cluster makes
it easy to build the hybrid scale-up/out Hadoop architecture
due to two reasons. First, a HPC center have different kinds
of machines with different number of CPU cores and RAM
size, which allows us to build the architecture without any
further cost to buy new machines.

Second, the configuration of Hadoop with a remote
storage makes the coexistence of scale-up and scale-out
machines in Hadoop possible. These machines can share the
same datasets and access their required data easily without
frequent data transmission between machines.

2.1 Introduction of Hadoop MapReduce

MapReduce is a framework that processes a large dataset
in parallel using a large number of nodes. HDFS is the file
system designed to closely work with Hadoop MapReduce
[2]. HDFS generally consists of a namenode that manages
the metadata of the cluster and multiple datanodes used to
store the data blocks. The running process of a MapReduce
job is composed of three phases: map, shuffle and reduce.
Each node has a specific number of map and reduce slots.
Given the input data, HDFS divides it to input data size

block size
number of data blocks and stores the blocks into datanodes.
In the map phase, the job tracker assigns each mapper
to process one data block in a datanode. The output of
all the mappers is intermediate data (i.e., shuffle data). In
the shuffle phase, the shuffle data is then partitioned and
shuffled to corresponding reduce nodes. The shuffle data is
copied to the reduce nodes’ memory first. If the shuffle data
size is larger than the size of in-memory buffer (which is
determined by the heap size), the shuffle data will be spilled
to local disk. In the reduce phase, the reducers aggregate the
shuffle data and generate the final output.

2.2 Hadoop MapReduce on HPC Cluster

We use myHadoop [25] to automatically configure Hadoop
on the Clemson Palmetto HPC cluster. Recently, a Java
Native Interface (JNI) shim layer has been implemented
on the Clemson Palmetto HPC cluster that allows Hadoop
MapReduce to store input/output on a remote storage file
system (i.e., OFS) directly. OFS is a parallel file system that
distributes data across multiple servers. The remote storage
in general has much faster I/O performance than local

disks [1]. Moreover, because of the centralization of remote
storage, it is much easier to manage and maintain than the
local storage. With OFS, no modifications to the Hadoop
source code and MapReduce jobs are required.

2.3 Experiment Environment
In the experiments, we use Hadoop version 1.2.1. We use
two machines for scale-up Hadoop MapReduce. Each scale-
up machine is equipped with four 6-core 2.66GHZ Intel
Xeon 7542 processors, 505GB RAM, 91GB hard disk. On
Clemson Palmetto HPC center, the remote file system con-
nects to the computing nodes with 10GB Myrinet. In order
to maintain a fair comparison between Hadoop with HDFS
and Hadoop with OFS architecutres, we select 10GB Myrinet
as the interconnection between the nodes. Additionally,
we do not aim to measure the absolution in the perfor-
mance measurement. We aim to compare the performance
of the four architectures in the comparable environments
and propose a cross point determination model based on
the measurement results. Finally, although Ethernet is the
most common used interconnection for Hadoop systems,
it is showed that in HPC architecture, the high speed
interconnection Myrinet and Infiniband can also provide
competitive performance [25]. The scale-out cluster consists
of twelve machines, each of which has two 4-core 2.3GHZ
AMD Opteron 2356 processors, 16GB RAM, 193GB hard
disk, and 10Gbps Myrinet interconnections.

The reason that we select two scale-up machines and
twelve scale-out machines is because it makes the scale-up
and scale-out clusters have the same price cost (according
to the investigation of market), thus makes the performance
measurements comparable. Previous research [10] used only
one scale-up machine and hence did not consider the net-
work performance between scale-up machines in the per-
formance study. In order not to exclude the network factor
in the performance study, we use two scale-up machines
and comparably 12 scale-out machines.

We compare the performance of different types of ap-
plications on four architectures in Table 1. For the HDFS
configuration, if one of the machines acts as both namenode
and datanode, it will degrade the performance of Hadoop.
Since OFS itself has metadata servers, in order to achieve
fair comparison, we use an additional machine to serve as
namenode in HDFS.

2.4 Hadoop Configurations
It is important for us to optimize the configurations of
both scale-up and scale-out machines, either with OFS or
HDFS, to achieve the best application performance of the
four architectures.
Heap size In Hadoop, each map and reduce task runs
in a JVM. The heap size is the memory allocated to each
JVM for buffering data. If the memory is full, the data
in memory is spilled to the local disk, which introduces
overhead. By default, the heap size is 200MB for each JVM.
Current modern servers (regardless of scale-out or scale-
up machines) always provide sufficient memory for us to
increase the heap size to reduce the overhead and improve
the JVM performance. However, if the heap size is too large,
the memory used for heap is wasted and the out of memory
error may occur. To achieve the best performance and also
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avoid the out of memory error [10] in our experiments,
through trial and error, we set the heap size to 8GB per task
on scale-up machines, and to 1.5GB and 1GB for shuffle-
intensive and map-intensive applications on scale-out ma-
chines, respectively.
Map and reduce slots To ensure the best performance, the
total number of map and reduce slots is set to the number of
cores for both scale-up and scale-out machines. For example,
if we use machines with 4-core CPUs, the sum of map and
reduce slots is equal to 4. Therefore, in our experiments,
each scale-up machine has 24 map and reduce slots, while
each scale-out machine has 8 map and reduce slots in total.
Remote file system strip size In HDFS, a file is broken into
small blocks and each data block is processed by one map
task. It is important to set the block size properly, which
cannot be too small or too large. We set the HDFS block
size to 128MB to match the setting in the current industry
clusters. Similarly, OFS stores data in simple stripes (i.e.,
similar as blocks in HDFS) across multiple storage servers
in order to facilitate parallel access. The stripe size is 4KB in
default. In order to compare OFS fairly with HDFS, we also
set the stripe size to 128MB.
The number of remote storage servers There are 32
remote storage servers in OFS in the Clemson HPC cluster.
These 32 remote storage servers are connected with high-
speed interconnection Myrinet, which is a high-speed lo-
cal area network and has much lower protocol overhead
than standard Ethernet. Currently, these 32 remote storage
servers are sufficient to provide low latency for around 2000
machines on Palmetto and hence we do not need to worry
that this remote file system is not scalable to large Hadoop
MapReduce clusters. In our experiments, we use 8 remote
servers to store each file in parallel.
RAM drive of scale-up machines The scale-up machines
provide a large amount of memory size (i.e., 505GB in
the experiments), which is an advantage of the scale-up
machines. Even though we set the heap size to 8GB, there
is much memory space left. To fully take advantage of the
unused memory in the scale-up machines, Palmetto enables
to use half of the total memory size as tmpfs, which serves
the same functions as RAMdisk. On the other hand, since
the memory size is limited on the scale-out machines (i.e.,
16GB), we do not use memory as RAMdisk.
Shuffle data placement Although Clemson Palmetto HPC
cluster allows us to configure Hadoop with remote file
system OFS, we only can place input and output data to
OFS, but cannot place shuffle data to OFS. We need to utilize
the local file system to store the shuffle data. For the scale-
up machines in our experiments (with HDFS and OFS), we
place the shuffle data on RAMdisks, which improves the
shuffle data I/O performance. For scale-out machines, we
store the shuffle data in the local disks (i.e., HDD).

3 PERFORMANCE MEASUREMENT

In this section, we compare the performance of shuffle-
intensive and map-intensive jobs on the four architectures
in Table 1. Shuffle-intensive applications have large shuffle
data size, while map-intensive applications generally do
not contain large shuffle data size. We expect to provide
a thorough analysis on how different applications benefit

from scale-up and scale-out clusters, with remote and local
storage respectively.

3.1 Types of Applications
The applications we use include Wordcount, Grep, Terasort,
the write test and read test of TestDFSIO. Among them,
Wordcount, Grep and Terasort are typical shuffle-intensive
applications. Specifically, Wordcount and Grep have only
relatively large input and shuffle size but small output size,
while Terasort has relatively large input, shuffle and output
size. We generated the input data by BigDataBench [33]
based on the Wikipedia datasets for Wordcount, Grep, and
Terasort. The write test and read test of TestDFSIO are typ-
ical map-intensive applications. We measure the following
metrics of each job:
• Execution time, which is the job running time and calculat-
ed by the job ending time minus job starting time.
•Map phase duration calculated by the last map task’s ending
time minus the first map task’s starting time.
• Shuffle phase duration calculated by the last shuffle task’s
ending time minus the last map task’s ending time.
• Reduce phase duration, which is the time elapsed from the
ending time of the last shuffle task to the end of the job.

Note that due to the limitation of local disk size, up-
HDFS cannot process the jobs with input/output data size
greater than 80GB.

Since the execution time and map phase duration of jobs
with different input data sizes differs greatly, it is difficult
to see the experimental results of small data sizes in the
figures. Therefore, we normalize execution time and map
phase duration results by the results of up-OFS, since we
only focus on the performance comparison among up-OFS,
up-HDFS, out-OFS, and out-HDFS, rather than the exact
execution time or map phase duration. For example, if a job
running on up-OFS and up-HDFS has an execution time of
10 and 20 seconds, respectively, then up-OFS on the figure
is shown as 1, while up-HDFS on the figure is shown as 2.
And we only need to know from the figure that up-OFS has
better performance than up-HDFS.

3.2 Performance of Shuffle-Intensive Applications
In this section, we show the performance evaluation of
shuffle-intensive applications: Wordcount, Grep and Terasort.
As we mentioned above, all these three applications include
a large amount of shuffle data.

Figures 5(a), 6(a), and 7(a) show the execution time
of Wordcount, Grep and Terasort versus different input da-
ta sizes, respectively. We see that when the input da-
ta size is small (0.5-8GB), the performance of Wordcoun-
t, Grep and Terasort all follows: up-HDFS>up-OFS>out-
HDFS>out-OFS. Recall that the number of required map
slots equals d input data size

block size e. The scale-up machines have
better performance when the input data size is small be-
cause of three reasons. First, the two scale-up machines can
provide the majority of required map slots of the small jobs
(defined as jobs with small input data size), which means
that the jobs can be completed in only a few task waves.
The number of map (reduce) waves of a job is calculated
by the number of distinct start times from all mappers
(reducers) of the job. Thus, small jobs can benefit more from
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Fig. 5: Measurement results of shuffle-intensive Wordcount.
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Fig. 6: Measurement results of shuffle-intensive Grep.

more powerful CPU resources of the scale-up machines
than from scale-out machines. Second, these jobs are all
shuffle-intensive and their performance is very related to
the memory resource. The map outputs are copied to the
reduce nodes’ memory, which is limited by the heap size. A
larger heap size makes it less likely to spill the map outputs
to the local disks. The more memory resource of scale-up
machines provides larger heap size and hence enhances the
performance of these shuffle-intensive applications. Third,
for the shuffle data placement, the RAMdisks in the scale-up
machines are much faster than the local disks in the scale-
out machines.

When the input data size is small, the performance
of out-HDFS is around 20% (calculated by OFS−HDFS

HDFS )
better than out-OFS, and up-HDFS is around 10% better
than up-OFS. Although a remote file system has better I/O
performance than HDFS [1], its advantage cannot be shown
for small jobs. This is caused by the network latency in
the communication with the remote file storage, which is
independent on the data size. When the data size is small,
the execution time is also small and the network latency
occupies a relatively high portion of the total execution time.
Then, the performance of the remote file system becomes
slightly worse than the local file system. However, we see
that up-OFS performs around 10-25% better than out-HDFS,
which means that scale-up Hadoop with remote file system
outperforms the traditional scale-out Hadoop with HDFS.

We also see from the figures that when the input da-
ta size is large (>16GB), the performance of Wordcount
and Grep follows out-OFS>out-HDFS>up-OFS>up-HDFS,
while Terasort follows out-OFS>up-OFS>out-HDFS>up-
HDFS. It means that scale-out machines are better for the
shuffle-intensive jobs with large input data size (i.e., large
jobs) than scale-up machines. The reason is that a large
input data size usually requires a large number of map slots,
which however is the primary bottleneck of scale-up ma-
chines though they have more powerful CPU resources. The
requirements of more map slots and less task waves of large
jobs make them benefit more from the scale-out machines.

OFS performs better than HDFS because the more powerful
dedicated remote servers in OFS and the high speed HPC
interconnections (i.e., 10Gbps Myrinet) can provide a higher
I/O performance than HDFS. Terasort performs different
from Wordcount and Grep on up-OFS and out-HDFS since
the sorting program not only has relatively large shuffle
data size but also large output data size, while Wordcount
and Grep have a negligible output data size compared to
Terasort. It means that with OFS, Terasort reads input data for
map tasks from OFS and writes the output of reduce tasks to
OFS, while Wordcount and Grep only take advantage of OFS
during reading input data for map tasks. Therefore, Terasort
benefits twice from the higher I/O rate of OFS, which results
in its better performance on up-OFS than out-HDFS.

Furthermore, we see from the figures that as the input
data size increases, the performance on scale-up machines
decreases while the performance on scale-out machines
increases. The three jobs have different performance de-
grading speed on scale-up machines as the input data size
increases though they are all shuffle-intensive applications.
The cross points of input data size of Wordcount, Grep and
Terasort are close to 32GB, 16GB and 16GB, respectively. That
is, when the input data size of a Wordcount (or Grep, Terasort)
job is smaller than 32GB (or 16GB), then it performs better
in scale-up machines, otherwise, it performs better in scale-
out machines. This cross point difference between the jobs
is caused by the different shuffle/input ratio calculated by
shuffle data size
input data size . Given the same input data size, if a job’s

shuffle data size is large, it can benefit more from the large
memory and fast RAMdisk of the scale-up machines in the
shuffle phrase, thus reduces the shuffle phase duration. In
our experiments, regardless of the input data size of the
jobs, the shuffle/input ratio of Wordcount, Terasort and Grep
are always around 1.6, 1 and 0.4, respectively. Therefore, the
larger shuffle data size of Wordcount leads to slower appli-
cation performance degradation on the scale-up machines
when the input data size increases and a larger cross point
than other applications.

Since the execution time is determined by the durations
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(a) Execution time.
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(b) Map phase duration.
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(c) Shuffle phase duration.
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(d) Reduce phase duration.

Fig. 7: Measurement results of shuffle-intensive Terasort.
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Fig. 8: Cross points of Wordcount, Grep and Terasort.

in the map, shuffle and reduce phases, we then study these
broken-down durations. Figures 5(b), 6(b) and 7(b) show
the map phase duration of Wordcount, Grep and Terasort,
respectively. We see that the map phase duration of these
jobs has similar performance trends and order as the job
execution time. When the input data size is small (0.5-8GB),
the map phase duration is shorter on scale-up than on scale-
out; when the input data size is large (>16GB), the map
phase duration is shorter on scale-out than on scale-up. This
is mainly because the map phase duration consists of more
waves of map tasks on scale-up machines than on scale-
out machines. Comparing OFS and HDFS in either scale-
up or scale-out machines, we see that when the input data
size is between 0.5 and 8GB, the map phase duration of
these jobs are 10-50% shorter on HDFS. However, up-OFS
still outperforms out-HDFS by 10-25% because of the higher
benefits from scale-up machines for small jobs. When the
input data size is larger than 16GB, the map phase duration
is 10-40% shorter on OFS than on HDFS, no matter on the
scale-up or scale-out cluster.

Figures 5(c), 6(c) and 7(c) show the shuffle phase du-
ration of Wordcount, Grep and Terasort, respectively. We see
that the shuffle phase duration is always shorter on scale-up
machines than on scale-out machines. This is because the
shuffle phase benefits from the larger memory resource and
the RAMdisk of scale-up machines. We then can conclude
from the map phase and shuffle phase figures: the cross
point appears when the benefit of shuffle phase from scale-
up machines is not able to compensate the drawback of
scale-up machines due to fewer map and reduce slots.

Figures 5(d), 6(d) and 7(d) show the reduce phase dura-
tion of Wordcount, Grep and Terasort, respectively. The reduce
phase of Wordcount and Grep just aggregates the map out-
puts which have small size, but the reduce phase of Terasort
needs to sort the map outputs which has the same size as
the input data. Therefore, Wordcount and Grep use only a few
seconds during reduce phase after the shuffle phase, while
Terasort uses around 5-1800 seconds. The scale-out machines
have more reduce slots than scale-up machines and hence
the reduce phase duration of Terasort acts similarly as the

execution time and the map phase duration: when the input
data size is small (0.5-8GB), the reduce phase duration is
shorter on scale-up than on scale-out; when the input data
size is large (>16GB), the reduce phase duration is shorter
on scale-out than on scale-up. We see neither OFS nor HDFS
affects the reduce phase duration of Wordcount and Grep.
For Terasort, the reduce phase duration is 20-65% shorter on
HDFS when the input data size is small (0.5-8GB) in either
the scale-up or scale-out cluster. However, benefiting from
scale-up machines, up-OFS has reduce phase duration 10-
25% shorter than out-HDFS for Terasort. It is 20-70% shorter
on OFS than on HDFS no matter on scale-up or scale-out
cluster when the input data size is large (>16GB). Therefore,
Terasort benefits from OFS during both map and reduce
phase when the input data size is large, resulting in its
higher execution time difference between OFS and HDFS.
When the data is small, up-OFS is a better choice than
traditional Hadoop with HDFS.

To illustrate the cross points of Wordcount, Grep
and Terasort, we draw Figure 8, which shows the nor-
malized execution time of each job on the scale-out
cluster by its execution time on the scale-up cluster
(e.g., execution time on scale−out(Grep)

execution time on scale−up(Grep) ), denoted by out-OFS-
Wordcount, out-OFS-Grep and out-OFS-Terasort, respec-
tively. Recall that the shuffle/input ratio of Wordcount,
Terasort and Grep is always around 1.6, 1 and 0.4, respec-
tively. We from the figure that Wordcount with a larger
shuffle/input ratio has a higher cross point (i.e., near 32GB)
than the cross point (i.e., near 16GB) of Grep and Terasort
with smaller shuffle/input ratios. A higher shuffle/input
ratio leads to a higher cross point, and vice versa. Near
the cross point, the benefit from scale-out cluster due to
large input data size equals the benefit from scale-up cluster
due to large shuffle data size. When the input data size
is smaller than the cross point, scale-up cluster is a better
choice, otherwise, scale-out cluster is a better choice.

As we mentioned above, a larger shuffle/input ratio
results in a larger cross point. Intuitively, Terasort has a larger
shuffle/input ratio (i.e., 1.0) than Grep’s shuffle/input ratio
(i.e., 0.4), and hence Terasort’s cross point should be larger
than the Grep’s. However, as shown in Figure 8, Terasort and
Grep have the same cross point at 16GB, which does not
appear as we expect. To investigate the cross point more
accurately, we further conducted performance measurement
of Wordcount, Terasort and Grep with the input data size
range (16, 32) GB, (8,16) GB, and (8, 16) GB, respectively.
Figures 9(a), 9(b) and 9(c) show the normalized execution
time of Wordcount, Terasort and Grep. Figure 9(d) is the cross
point figure newly generated from the above three figures.
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(a) Wordcount.
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(b) Grep.
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(c) Terasort.
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Fig. 9: Analysis of cross points for Wordcount, Grep and Terasort.

We see that the cross points of Wordcount, Terasort and Grep
are 30, 12, and 15.

3.3 Performance of Map-Intensive Applications
In this section, we show the performance evaluation of the
read and write test of TestDFSIO. In the read (or write) test,
each map task is responsible for reading (or writing) a file.
Therefore, the number of mappers is equal to the number
of files. In either read or write test, there is only one reduce
task, which collects and aggregates the statistics of the map
tasks, such as completion time of read/write and file size.

Figures 10(a) and 11(a) show the normalized execution
time of TestDFSIO write and read test versus output and
input data size, respectively. Again, scale-up machines are
the best for small write/read jobs (1-5GB) because small
jobs do not require many mappers and scale-up machines
can provide the required map slots and better CPU than
scale-out machines. However, the execution time difference
of TestDFSIO between scale-up and scale-out is not as sig-
nificant as the shuffle-intensive applications. This is because
TestDFSIO is a map-intensive application, which does not
have large shuffle data. Therefore, the large memory benefit
of scale-up machines for improving shuffle phase duration
is not exhibited in map-intensive applications.

On the other hand, for large write/read data size
(≥10GB) (i.e., a large number of mappers), the performance
follows out-OFS>up-OFS>out-HDFS. For large jobs,
running on scale-out machines with remote storage is
better than scale-up machines with remote storage because
scale-out machines have more map slots and large jobs
can be completed in fewer task waves. Running on
scale-out machines with local storage results in the worst
performance because the local disks are slower than the
remote storage and the remote file system OFS can provide
higher I/O performance than HDFS.

Figures 10(b), 10(c) and 10(d) and Figures 11(b), 11(c)
and 11(d) show the map, shuffle and reduce phase durations
of the write/read test, respectively. Since the map phase of
TestDFSIO completes the majority work in the jobs, while
the shuffle phase only collects the statistics and the reduce
phase simply aggregates the results, we see that in both the
write and read tests, the map phase duration exhibits a sim-
ilar performance trends as the execution time. The shuffle
and reduce phase durations of both tests are quite small
(<8s), and they exhibit no specific relationships and are not
affected by either OFS or HDFS. Comparing OFS and HDFS
in the scale-up or scale-out cluster, when the write/read
data size is small (1-5GB), HDFS leads to 10-20% shorter
map phase duration. However, up-OFS still generates 5-
15% shorter map phase duration than out-HDFS. When the

write/read data size is large (≥10GB), OFS leads to 50−80%
shorter map phase duration, a significant improvement.

We conclude that for map-intensive jobs in our experi-
ment environment, if the write/read data size is small (1-
5GB), the scale-up machines are the better choice because
of better CPU. On the other hand, if the write/read data
size is large (≥10GB), scale-out machines can achieve better
performance because of more map and reduce slots and
better I/O performance of OFS over HDFS.

Figure 12 shows the normalized execution time of the
write (denoted by out-OFS-Write) and read (denoted by out-
OFS-Read) tests of TestDFSIO on the scale-out cluster by
its execution time on the scale-up cluster, respectively. We
see that the cross point is around 10GB for both tests. Since
the shuffle size (in KB) is negligible (which makes the shuf-
fle/input ratio close to 0) in both tests, these map-intensive
jobs benefit little from the scale-up machines during the
shuffle phase.

Again, to investigate the cross point more accurately, we
further conducted performance measurement of write/read
test of TestDFSIO at the range (6, 14)GB, respectively. Figures
13(a) and 13(b) show the normalized execution time of
write/read test of TestDFSIO. Figure 13(c) is the cross point
figure newly generated from Figures 13(a) and 13(b). Note
that the write test actually has only a very small input data
size but has a varying output data size in the measure-
ment. We confirm that the cross points of write and read
tests of TestDFSIO are both close to 10. As map-intensive
applications have a small shuffle data size, map-intensive
applications achieve less benefit from the large RAMdisks
of the scale-up machines during the shuffle phase. We con-
clude that the cross points for map-intensive applications
are smaller than those of shuffle-intensive applications.

3.4 Analysis of Cross Points of Different Applications
In this section, we will discuss how different factors affect
the cross point in detail. According to Figures 9(d) and 13(c),
we use a tuple to represent the relationship between the
shuffle/input ratio and cross point of each application. For
example, the tuples of Wordcount, Terasort, Grep and read
test of TestDFSIO are (1.6, 30), (1, 12), (0.4, 15), and (0, 10),
respectively. If we consider a linear relationship between the
shuffle/input ratio (S/I) and cross point (CP ), we have:

CP = a ∗ S/I + b. (1)

First, we substitute the tuples of cross points in Equation
(1). We are able to calculate that one possible answer is
a = 12.5, b = 10. Further, we find that the tuples of
Wordcount, Grep and read test of TestDFSIO satisfy Equation
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(a) Execution time.
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(b) Map phase duration.
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(c) Shuffle phase duration.
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Fig. 10: Measurement results of map-intensive write test of TestDFSIO.
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(b) Map phase duration.
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(c) Shuffle phase duration.
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(d) Reduce phase duration.

Fig. 11: Measurement results of map-intensive read test of TestDFSIO.

0.8

0.9
1

1.1

1.2
1.3

0 10 20 30

No
rm

ail
ize

d 
ex
ec
ut
io
n 
tim

e

Output/Input data size (GB)

Normalized
out‐OFS‐Write
out‐OFS‐Read

10

Fig. 12: Cross point of write and read test of TestDFSIO.

(1). However, Terasort’s tuple does not satisfy this equation,
which is caused by the output data size of Terasort. In
detail, the output data sizes of Wordcount, Grep and read
test of TestDFSIO are very close to zero regardless of their
input data size, and hence their output data sizes do not
have much impact on the cross points. However, the output
data size of Terasort increases as its input and shuffle data
size increases, and hence has impact on the cross point
determination.

We further investigate how the output data size affects
the cross point by using the write test of TestDFSIO. In
Figure 13(a), we see that the cross point of write test of
TestDFSIO is 10GB output data size. This means that scale-
up machines are better for the jobs with output data size
smaller than 10GB, while scale-out machines are better for
the jobs with output data size larger than 10GB. This is
because the scale-out machines benefit from more CPU cores
on writing the output data to the file system in parallel.

Similarly, we can conclude that the cross point of Terasort
is affected by the output data size. In detail, if we substitute
Terasort’s tuple in Equation (1), the cross point should be
22.5GB. However, the output data size of Terasort introduces
a bias to the cross point, since the benefit is offset by the
worse performance on scale-up machines when the output
data size is greater than 10GB. Therefore, the measured
cross point is less than 22.5GB. In other words, in order to
compensate the poor performance introduced by the output
data size (22.5-10=12.5GB greater than 10GB), the calculated
cross point (22.5GB) is biased by 22.5-12=10.5GB. As shown
in Figure 12, we can consider a linear relationship between

the increase of output data size and the cross point.
Based on the above analysis, we conclude the process

to calculate cross point for one job in our cluster as follows.
First, we calculate the cross point CP based on Equation (1),
Next, we check whether the cross point of this job is offset
by the worse performance on scale-up machines caused by
the output data size.

OutputCP = Output/Input ∗ CP ≥ 10, (2)

where Input and Output are the input and output data size
of the job, respectively, andOutputCP is the output data size
of the job corresponding to the cross point. If OutputCP is
greater than 10GB, the cross point calculated from Equation
(1) needs to be offset, otherwise, it is not offset. Therefore,
we have,

CP =

{
CP, OutputCP < 10

CP − 10.5
12.5 ∗ (OutputCP − 10) OutputCP ≥ 10,

(3)Summary of this section
• Hadoop with a remote file system improves the perfor-
mance of Hadoop with HDFS, when jobs are scheduled to
run on the hybrid cluster.
• We use a linear model for the cross point determination,
since a linear model is sufficient to summarize the obser-
vations from the measurements and further determine the
cross point in a small error. We will evaluate the accuracy of
our model of cross point determination in the evaluation in
Section 5.3.

Previous studies [30, 32] show that the execution time
of a MapReduce job often has some linear relationship
with its data size, as shown in Figure 4. The difference
between scale-up machines and scale-out machines is that
the two curves (execution time versus data size) have d-
ifferent slopes, which are affected by some factors. Since
the impacted factors affect the slopes of the curves and the
cross point is the intersection of the two curves, we can
conclude that the cross point has some linear relationship
with the impacted factors. Impacted factors are summaries
as follows.
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(a) Write test of TestDFSIO.
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(b) Read test of TestDFSIO.
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Fig. 13: Analysis of cross points for write/read test of TestDFSIO.

• Input data size, shuffle/input ratio, and output data
size all affect the benefits gained from scale-up and scale-
out clusters. When the input data size is small, the scale-
up cluster outperforms the scale-out cluster, and when the
input/output data size is large, the scale-out cluster outper-
forms scale-up machines. The cross point depends on the
shuffle data size; a larger shuffle size leads to more benefits
from the scale-up machines and vice versa.

4 A HYBRID SCALE-UP/OUT HADOOP ARCHITEC-
TURE

A traditional Hadoop cluster only has scale-out machines
in general. However, we have demonstrated in Section 3
that different jobs perform better on scale-up machines
or on scale-out machines. In current real-world workload-
s, the jobs are increasingly diverse mix of computations
and data size levels. Recall that in Section 1 improving
the performance of small jobs is important for production
clusters. Therefore, we propose a new Hadoop architecture
including both scale-up and scale-out machines to achieve
better performance for real-world workloads.

As indicated in Section 1, there exist two main challenges
for building such a new architecture: data storage and scale-
up or scale-out selection. For the data storage challenge,
HDFS and storing all data blocks needed by scale-up ma-
chines in themselves are not efficient methods. Besides, this
latter solution requires the modification of the function of
the namenode to decide where to store the data blocks based
on the jobs handling them. Since usually data is distributed
before jobs are launched, this solution introduces not only
extra overhead and but also complexity to the namenode’s
function. We then use a remote file system (e.g., OFS) for the
hybrid Hadoop architecture, the feasibility and advantage
of which are shown in Section 3. Since both scale-up and
scale-out machines can be mounted with the same remote
file system on HPC, jobs can read/write data no matter
they are scheduled to the scale-up or scale-out clusters
without data transmission between machines. Moreover,
using a remote file system allows us to implement the
hybrid architecture without modifying the namenode code
for data distribution. Intuitively, it seems that this hybrid
architecture improves the performance of small jobs at the
cost of the performance of large jobs because the traditional
Hadoop cluster has more map and reduce slots than the
hybrid architecture. However, we demonstrate in Section 5
that even with the hybrid architecture, the performance of
large jobs is improved due to better I/O performance of OFS
over HDFS and less slot competition for large jobs.

To handle the second challenge, we leverage our obser-
vations in Section 3 to make the decisions based on job
characteristics. Our experiments show that when a job has
shuffle/input ratio between 0.4 and 1, if the input data size
is smaller than 16GB, scale-up is a better choice, otherwise,
scale-out is a better choice. When a job has shuffle/input
ratio equals 1.6, if the input data size is smaller than 32GB,
scale-up is a better choice, otherwise, scale-out is a better
choice. We generalize 1.6 to ratios greater 1. We consider
jobs with shuffle/input ratios less than 0.4 as map-intensive
jobs, for which when the input data size is smaller than
10GB, scale-up is a better choice, otherwise, scale-out is a
better choice. Based on these observations, we design an
algorithm to decide whether scale-up or scale-out is a better
choice for a given job based on its shuffle/input ratio and
input data size. The pseudo-code of this algorithm is shown
in Algorithm 1.

However, we mentioned that the output data size also
affects the determination of cross point. Since Algorithm 1
does not consider the output data size factor, we further
propose an advanced scheduling based on the analysis of
Section 3.4, which jointly considers the shuffle/input ratio,
the input data size, and the output data size. The pseudo-
code of this advanced algorithm is shown in Algorithm 2.

We assume that job characteristics (i.e., the shuffle/input
ratio, the input data size and the output data size) are
already known by the users, which means that either the
users once ran the jobs before (i.e., recurring jobs) or the
jobs are well-known as map-intensive or shuffle-intensive.
Previous works [8, 20, 23] show that a large number of jobs
in production workloads are recurring jobs, which run pe-
riodically and have predictable characteristics such as input
data size and shuffle/input ratio. Authors in [23] show that
the future job characteristics for such jobs can be predicted
with an error as low as 6.5%, which allows the users to take
advantage of our scheduling algorithm. If the users do not
know the shuffle/input ratio of the jobs, we consider the
jobs as map-intensive (i.e., shuffle/input ratio less than 0.4)
and hence the cross points of the jobs are smaller (i.e., 10GB).
This is because we need to avoid scheduling any large
jobs to the scale-up machines. Otherwise, it would result in
performance degradation of small jobs. For example, a job
actually has a shuffle/input ratio of 0.1, input data size of
15GB, and output data size of close to 0. From Equation (1),
the job has a cross point of 12.5GB. However, if the user does
not know the shuffle/input ratio and we consider the job as
a shuffle-intensive job, it will be scheduled to the scale-up
machines. However, it actually should be scheduled to scale-
out machines. Due to this wrong scheduling, it increases
the number of jobs on scale-up machines and degrades the
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performance of other small jobs, which should be avoided.

Algorithm 1 Selecting scale-up or scale-out for a given job
without considering the output data size.
Inputs: NextJob: next job in the queue

Input: input data size of the job
S/I : shuffle/input ratio

1: while NextJob exists in the job queue do
2: if shuffle/input ratio > 1 then
3: if InputDataSize < 32GB then
4: Scale-up← NextJob
5: else
6: Scale-out← NextJob
7: end if
8: else if 0.4 ≤ shuffle/input ratio ≤ 1 then
9: if InputDataSize < 16GB then

10: Scale-up← NextJob
11: else
12: Scale-out← NextJob
13: end if
14: else
15: if InputDataSize < 10GB then
16: Scale-up← NextJob
17: else
18: Scale-out← NextJob
19: end if
20: end if
21: end while

Algorithm 2 Selecting scale-up or scale-out for a given job
considering the output data size.
Inputs: NextJob: next job in the queue

Input: input data size of the job
S/I : shuffle/input ratio
Output: output data size of the job

1: while NextJob exists in the job queue do
2: Calculate the cross point (CP) based on Equations (1), (2), and (3)
3: if Input < CP then
4: Scale-up← NextJob
5: else
6: Scale-out← NextJob
7: end if
8: end while

Note that we calculate the cross points according to the
measurement results from our cluster configurations. We
can conduct more experiments with other different jobs to
make the algorithm more accurate. Also, different cluster
configurations of scale-up and scale-out machines will lead
to different cross point results and the coefficients of Equa-
tion (1) may not be fit for other cluster configurations. In
this paper, we only attempt to show the factors affecting
the scale-up and scale-out selection and how they affect
the selection decision, and provide a method to design
the selection algorithm for the hybrid architecture. Other
designers can follow the same method to measure the cross
points in their clusters and develop the hybrid architecture.

5 PERFORMANCE EVALUATION

In this section, we use the Facebook synthesized workload
FB-2009 [14] to evaluate the performance of our hybrid
scale-up/out Hadoop architecture compared with tradition-
al Hadoop architecture. The CDF of input data size of this
workload is shown in Figure 3. We see that more than 80%
of jobs have an input data size less than 10GB. Due to the
limitation of space, please refer the other characteristics of
this workload to [14].

5.1 Experimental Setting
We used 2 scale-up machines and 12 scale-out machines
to deploy the hybrid scale-up/out architecture with the
OFS remote file system, and the hardware configurations
of these machines are the same as explained in Section 3. In
order to evaluate the two scheduling algorithms in Section
4, we deployed the hybrid scale-up/out architecture with
Algorithm 1 (Hybrid in short) and the advanced Algorithm
2 (Hybrid-adv in short), respectively. As a baseline, we
deployed a traditional Hadoop cluster (THadoop in short)
with HDFS and a Hadoop cluster with remote file system
OFS (RHadoop in short) using 24 scale-out machines (which
have comparably the same total cost as the machines in the
hybrid architecture) and one additional namenode. Since the
trace workload is synthesized from a 600-machine cluster
and we did our experiments on 24 machines, we shrank
the input/shuffle/output data size of the workload by a
factor of 5 to avoid disk insufficiency. We ran the Facebook
workload consecutively on these two architectures based on
the job arrival time in the traces. In this experiment, we
assumed that the characteristics of all the submitted jobs are
known based on the FB-2009 trace. We refer to the jobs that
are scheduled to scale-up cluster and scale-out cluster by
our scheduler as scale-up jobs and scale-out jobs, respectively.

5.2 Performance Analysis
Figure 14(a) shows the CDF of the execution time of the
scale-up jobs in the workload. We see that the execution time
distribution of Hybrid and Hybrid-adv are much broader
than THadoop and RHadoop. Their maximum execution
time for scale-up jobs is 48.53s, 41.89s, 83.37s and 68.17s on
Hybrid, Hybrid-adv, THadoop and RHadoop, respectively.
This result demonstrates the effectiveness of the hybrid
architecture in improving the performance of small job-
s. In addition, Hybrid-adv has a broader execution time
distribution than Hybrid, which means that Hybrid-adv
outperforms Hybrid for the scale-up jobs. This is because
Hybrid-adv provides a more accurate scale-up or scale-out
selection for the jobs, which allows the jobs to accurately
select the suitable machines and achieve more performance
improvement. RHadoop has the worst performance because
OFS performs worse than HDFS for small input data sizes
on the scale-out Hadoop.

Figure 14(b) shows the CDF of the execution time of
the scale-out jobs in the workload. In order to illustrate
the figure clearly, we only show the scale-out jobs with
execution time less than 200s in the main figure, and use
the embedded small figure to show those with execution
time greater than 200s. For scale-out jobs, the maximum
execution time is 1207s, 1099s, 3087s and 2734s on Hy-
brid, Hybrid-adv, THadoop and RHadoop, respectively. The
percent of jobs completed after 1099s on THadoop and
RHadoop are 4.7% and 1.7%, respectively. Benefitting from
the higher I/O performance of OFS, RHadoop outperforms
THadoop for large input sizes.

Intuitively, it seems that we improve the performance of
scale-up jobs at the cost of the performance of scale-out jobs
and the scale-out jobs should have better performance on
THadoop because THadoop has more map and reduce slots
than Hybrid and Hybrid-adv. However, Figure 14(b) shows
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Fig. 14: Measurement results of the Facebook workload experiment.

that Hybrid and Hybrid-adv still outperform THadoop and
RHadoop even for scale-out jobs, indicating that Hybrid and
Hybrid-adv improve not only the performance of scale-up
jobs but also the scale-out jobs. There are two main reasons.
The first reason is because Hybrid and Hybrid-adv is con-
figured with the remote file system, which provides better
performance for jobs with large input sizes than HDFS, as
shown in Section 3. The second reason is that although there
are more map and reduce slots in THadoop, a large amount
of scale-up jobs in the workload occupy the slots and have
poor performance due to less powerful CPU, thus resulting
in a long time before releasing the occupied slots to scale-
out jobs. On the contrary, in Hybrid and Hybrid-adv, all the
scale-up jobs are run on the scale-up cluster, while scale-out
jobs run on the scale-out cluster. Therefore, scale-out jobs
in Hybrid and Hybrid-adv do not need to compete with
scale-up jobs for slots or with other scale-out jobs because
only 15% of the jobs in the workload are scale-out jobs.
Similarly, this is also the reason that Hybrid and Hybrid-adv
outperform RHadoop for scale-out jobs. Therefore, scale-out
jobs in Hybrid and Hybrid-adv can always be provided with
more map and reduce slots than THadoop or RHadoop,
resulting in better performance in Hybrid and Hybrid-adv.
In addition, Hybrid-adv outperforms Hybrid, since Hybrid-
adv provides a more accurate scale-up or scale-out selection
for the jobs, which allows the jobs to achieve the best
benefits from the hybrid architecture.

Figure 14(c) show the CDF of the execution time of
all the jobs in the workload. To make the figure clear, we
eliminated 2.57%, 2.21%, 2.31% and 2.35% of the jobs with
execution time greater than 200 seconds on Hybrid, Hybrid-
adv, THadoop and RHadoop, respectively. We see that the
execution time distribution on Hybrid and Hybrid-adv are
broader than THadoop and RHadoop, which implies that
Hybrid and Hybrid-adv provide better performance due to
the higher performance for both scale-up and scale-out jobs
as explained previously. Hybrid-adv outperforms Hybrid
due to the aforementioned reason that Hybrid-adv provides
a more accurate scale-up or scale-out selection for the jobs.

Moreover, we observe that Hybrid and Hybrid-adv not
only improves the performance of jobs, but also generate
fewer job running failures. Specifically, 98%, 98%, 82.3%
and 89.2% of jobs were successfully executed on Hybrid,
Hybrid-adv, THadoop and RHadoop, respectively. The fail-
ures on THadoop and RHadoop were observed general-
ly in job groups with similar arrival time and the failed
groups appeared multiple times. Specifically, the failures
occur when there are many small jobs and several large
jobs submitted to THadoop and RHadoop, and the large
jobs have reduce tasks that take a long time to complete. A

large number of small jobs that have completed their map
tasks must wait for the reduce slots in queue. Then, all the
shuffle data from these small jobs is spilled to the local disks,
which overloads the local disks and generates job failures.
On the other hand, the jobs are less likely to fail on Hybrid
and Hybrid-adv because the workload is split into a large
percent (85%) of scale-up jobs and a small percent (15%)
of scale-out jobs. The short execution time of scale-up jobs
prevents from forming a long queue on scale-up machines.
Scale-out machines process only a small percent of scale-out
jobs, which makes it less likely to generate slot competition
or a long job queue. However, the utilization of the remote
file system for input and output data avoids overloading
local disks, resulting in less failures on Hybrid, Hybrid-
adv, and RHadoop than on THadoop. Note that when the
authors [14] of the Facebook synthesized workload ran this
workload (with decreased input/shuffle/output size by a
factor of 3) on a 200-machine cluster, 8.4% of the jobs
failed. Although their configurations and hardware have
some differences from ours, our 98% success rate is still very
promising.

Figure 14(d) shows the throughput, defined as the num-
ber of jobs finished per ten seconds. We see that the
throughput of Hybrid, Hybrid-adv, THadoop and RHadoop
is 0.44, 0.48, 0.34 and 0.38, respectively. RHadoop has better
throughput than THadoop because of its higher success rate.
Hybrid-adv improves the throughput of Hybrid, THadoop
and RHadoop by 8%, 39% and 23%, respectively. This result
demonstrates the effectiveness of Hybrid and Hybrid-adv
in improving the throughput. In summary, our trace-driven
experiments show that the proposed hybrid architecture
outperforms the traditional Hadoop architecture in terms
of job execution time, failure rate and throughput.

5.3 Sensitivity and Accuracy Analysis
The benefits of our Hybrid cluster depend on (a) the accura-
cy that the job characteristics (e.g., input, shuffle, and output
data size) can be predicted, and (b) the model to determine
cross point. In this section, we evaluate the Hybrid cluster’s
performance to the variation of these factors. In the follow-
ing figures, we only evaluate the results of Hybrid-adv.
Error in predicted job characteristics. As mentioned before,
we define the type of an application by its shuffle/input
ratio. Besides, the cross point is also related to shuffle/input
ratio. Therefore, we varied the error of shuffle/input ratio
of jobs. Figure 15(a) shows the reduction of throughput
on Hybrid-adv versus the error rate of shuffle/input ratio.
We see that, as the shuffle/input ratio decreases, it does
not reduce the throughput on Hybrid-adv much. Note that
the decrease of shuffle/input ratio leads to a smaller cross
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point according to Equation (1). A smaller cross point could
result in many scale-up jobs running on scale-out machines.
However, even when the cross point is decreased, we see
that it still provides a better throughput than THadoop and
RHadoop because there are still plenty of scale-up jobs run-
ning on scale-up machines. However, as the shuffle/input
ratio increases, it does reduce the throughput of Hybrid-
adv severely. This is because once the shuffle/input ratio
increases, the cross point also increases. This allows many
scale-out jobs to run on scale-up machines, which leads to
a poor performance of the scale-up jobs since the scale-
out jobs consume a large amount of resources on scale-up
machines for a long time.
Error in the model to determine cross point. In Hybrid,
we roughly determine the cross point as 32GB for shuffle-
intensive applications with shuffle/input ratio greater than
1, 16GB for shuffle-intensive applications with shuffle/input
ratio greater than 0.4 but smaller than 1, and 10GB for map-
intensive applications. In Hybrid-adv, a fine-grained model
of cross point determination is defined by Equations (1),
(2), and (3). In order to test the robustness and accuracy of
Hybrid-adv, we varied the cross point with error, while the
shuffle/input ratios of all the jobs are set according the trace.

Figure 15(b) shows the reduction of throughput on
Hybrid-adv versus the error rate of cross point. We see that,
as the cross point cutoff line decreases, there is not much
reduction in throughput because of the aforementioned
reason that there are still plenty of scale-up jobs running
on scale-up machines. When the cross point cutoff line
increases 10%-30%, the reduction of throughput in Hybrid-
adv is lower than 10%, which still provides significant better
performance than THadoop and RHadoop. Hence, a small
error of cross point determination does not affect much on
the performance of the Hybrid cluster, which indicates the
robustness of Hybrid cluster.

As the cross point increases, the reduction of throughput
on Hybrid-adv increases. When the cross point increases by
100%, the reduction of throughput on Hybrid-adv reaches
41%. This is because setting a much higher cross point
allows many scale-out jobs to run on scale-up machines,
which consumes a large amount of resources on scale-up
machines for a long time. It results in queuing the scale-up
jobs for a long time, and hence leads to a poor performance
on Hybrid-adv.

Further, Figure 15(b) also reflects the accuracy of our
current model on cross point determination. First, when
the cross point varies slightly, there is not much impact
on the throughput. Second, if we set the cross point higher
or lower, it results in a poor throughput performance on
Hybrid-adv. It indicates that our model determines the cross
point in a relatively accurate range. Otherwise, it would lead
to a significant throughput reduction on Hybrid-adv.

In summary, we see that the performance of Hybrid-adv
is not quite sensitive to the error of job characteristics in 30%.
On the other hand, as the error rate increases, the perfor-
mance of Hybrid-adv can be severely impacted. However,
recent studies [18, 23] show that the job characteristics can
often be accurately predicted, since there are a large amount
of recurring jobs in production cluster. They demonstrate
that the job characteristics can be estimated with a small
error of 6.5% in average. Additionally, we demonstrate that
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Fig. 15: Sensitivity and accuracy analysis.

our model can determine the cross point in a relatively
accurate range.

5.4 Power Consumption Discussion
In modern clusters, power consumption becomes a signif-
icant expense. In this section, we expect to estimate the
power consumption of the hybrid cluster, compared to the
traditional scale-out cluster.
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Fig. 16: Power consumption analysis.

It has been shown that the main power consumers in
a machine are the CPUs and memory [11, 27]. It is also
reasonable to assume that the power consumption of other
elements like memory and hard disks is constant [11, 27].

We use a well-known CPU utilization centric model [11,
12, 27] to estimate the power consumption. Additionally,
previous studies demonstrate that the power consumption
has a linear relationship with the CPU utilization. In detail,
the power consumption can be estimated by the following
equation.

P = Pidle + α ∗ (Pmax − Pidle), (4)

where α is the CPU utilization, Pidle is the power con-
sumption at idle and Pmax is the power consumption at
maximum performance. Through empirical measurement
of different servers, this model can estimate the power
consumption of a machine within an error rate of±5 percent
[11, 27].

Therefore, in order to estimate the power consumption
of THadoop and Hybrid-adv, we measured CPU utilization
every second using the top command when they ran the
Facebook workload. We show the results in a period of 1800
seconds. The metric we use is average CPU utilization each
second, which is calculated by∑

CPU utilization of all the machines

number of machines
. (5)

Figure 16(a) shows the CDF of average CPU utilization
each second on THadoop. Figure 16(b) shows the CDF of
the average CPU utilization each second on Hybrid-adv,
breaking down by scale-up and scale-out machines.
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After checking the specifications of scale-up machine
and scale-out machines, we find that each scale-up machine
consume 1200W at maximum, while each scale-out machine
consumes 450W at maximum. The power consumption at
idle is observed to be around 70% [11, 27]. Therefore, we
consider Pidle for each scale-up machine as 840W and Pidle

for each scale-out machine as 315W.
Now, we use Equation (4) to calculate the power con-

sumption each second. Summing up the power consump-
tion for 1800 seconds, we find that THadoop consumes
around 1.61 ∗ 107J in total, while Hybrid-adv consumes
1.43 ∗ 107J in total. Therefore, we can conclude that Hybrid-
adv consumes less power than THadoop.

In summary, Hybrid-adv cluster can not only provide
better job execution time and throughput for MapReduce
workloads, but also consumes less power than THadoop.
Some previous works such as GreenMR [28] propose power
consumption models to predict the power consumption of
scale-up jobs and scale-out jobs, and then utilizes the models
to schedule different jobs to reduce the power consump-
tion. Our Hybrid-adv cluster can accommodate the power
consumption models to guide our scheduling decision to
further reduce the power consumption and improve the
performance. We leave this improvement of Hybrid-adv
cluster as our future work.

6 RELATED WORK

MapReduce [17] has been a popular framework that per-
forms parallel computations on big data. Cluster provision-
ing, configuring and managing for the Hadoop clusters is
essential, which requires thorough understanding of the
workloads. Recently, there are many efforts devoted to
characterizing the workloads in real-world cluster. Chen et
al. [14] analyzed two production MapReduce traces from
Yahoo! and Facebook in order to establish a vocabulary
for describing MapReduce workloads. Their another work
[13] characterized new MapReduce workloads, which are
driven in part by interactive analysis and with heavy use of
query-like programming frameworks such as Hive on top
of MapReduce. Ren et al. [29] characterized the workload
of Taobao production Hadoop cluster to provide an under-
standing of the performance and the job characteristics of
Hadoop in the production environment. Kavulya et al. [24]
analyzed MapReduce logs from the M45 supercomputing
cluster. Appuswamy et al. [10] conducted an evaluation
of representative Hadoop jobs on scale-up and scale-out
machines, respectively. They found that scale-up machines
achieve better performance for jobs with data size at the
range of MB and GB. Our work is different from the above
workload characterization works is that our work is the first
that compare the performance of the Hadoop workloads in
the four architectures shown in Table 1.

The above works also indicate that the majority jobs
in production workloads generally do not process large
data size. Since MapReduce [17] is primarily designed to
process large data sets, there is a conflict between the goal
of MapReduce and current production workloads. Improv-
ing the performance of small jobs attracts much attention
from the research community. For example, Elmeleegy [19]
presented Piranha, a system to optimize the small jobs

without affecting the larger jobs. Motivated by this paper,
we focused on finding out if the coexistence of scale-up
and scale-out machines can improve the performance of
workloads with a majority of small jobs.

Many works focus on improving the performance of
the MapReduce clusters from different aspects such as
job scheduling [3, 5, 21, 22], intermediate data shuffling
[7, 15, 16, 34] and improving small job performance [19]. The
work in [7] replaces HDFS with the Lustre file system and
places shuffle data in Lustre. MapReduce online [15] sends
shuffle data directly from map tasks to reduce tasks without
spilling the shuffle data to the disks in order to reduce the
shuffle phase duration. Camdoop [16] performs in-network
aggregation of shuffle data during data forwarding in order
to decrease the network traffic. Wang et al. [34] proposed
JVM-Bypassing shuffling for Hadoop to avoid the overhead
and limitations of the JVM. Unlike these previous works that
focus on improving the performance of traditional Hadoop,
our work focuses on designing a new hybrid scale-up/out
Hadoop architecture that fully utilizes both the advantages
of scale-up and scale-out machines for different jobs in a
workload to improve its performance.

7 CONCLUSION

Since a real-world workload usually has many jobs with
increasingly diverse mix of computations and data size
levels, solely using either scale-up or scale-out cluster to run
a workload cannot achieve high performance. Thus, in this
paper, we explore building a hybrid scale-up/out Hadoop
architecture. However, building such an architecture faces
two main challenges. First, how to distribute data blocks of
a workload dataset to avoid degrading node performance
caused by limited local disk or data transmission between
nodes. Second, how to decide whether to use scale-up or
scale-out cluster for a given job. To handle these challenges,
we have conducted performance measurement of different
applications on four HPC-based Hadoop platforms: scale-
up machines with OFS, scale-out machines with OFS, scale-
up machines with HDFS, and scale-out machines with HDF-
S. Based on our measurement results, we design a hybrid
scale-up/out Hadoop architecture, which uses a remote file
system rather than HDFS and has a scheduler to determine
using scale-up or scale-out for a given job to achieve better
performance. We further conducted experiments driven by
the Facebook synthesize workload to demonstrate that this
new architecture outperforms both the traditional Hadoop
with HDFS and with OFS. This is the first work that
proposes the hybrid architecture and we propose a simple
scheduler to handle the key challenges. We consider our
work as a starting point and expect it will stimulate many
other works on this topic. In our future work, we will further
develop the scheduler to be more comprehensively, such
as the load balancing between the scale-up machines and
scale-out machines, HDFS block size, and the number of
map/reduce tasks of jobs, etc. For example, if many small
jobs arrive at the same time without any large jobs, all the
jobs will be scheduled to the scale-up machines, resulting in
imbalance allocation of resources between the scale-up and
scale-out machines.
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