
1644 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

A Study on the Impact of Memory DoS Attacks on
Cloud Applications and Exploring Real-Time

Detection Schemes
Zhuozhao Li , Tanmoy Sen , Graduate Student Member, IEEE,

Haiying Shen , Senior Member, IEEE, Member, ACM, and Mooi Choo Chuah , Fellow, IEEE

Abstract— Even though memory denial-of-service attacks can
cause severe performance degradations on co-located virtual
machines, a previous detection scheme against such attacks
cannot accurately detect the attacks and also generates high
detection delay and high performance overhead since it assumes
that cache-related statistics of an application follow the same
probability distribution at all times, which may not be true
for all types of applications. In this paper, we present the
experimental results showing the impacts of memory DoS attacks
on different types of cloud-based applications. Based on these
results, we propose two lightweight and responsive Statistical
based Detection Schemes (SDS/B and SDS/P) that can detect
such attacks accurately. SDS/B constructs a profile of normal
range of cache-related statistics for all applications and use
statistical methods to infer an attack when the real-time collected
statistics exceed this normal range, while SDS/P exploits the
increased periods of access patterns for periodic applications to
infer an attack. Upon SDS, we further leverage deep neural
network (DNN) techniques to design a DNN-based detection
scheme that is general to various types of applications and more
robust to adaptive attack scenarios. Our evaluation results show
that SDS/B, SDS/P and DNN outperform the state-of-the-art
detection scheme, e.g., with 65% higher specificity, 40% shorter
detection delay, and 7% less performance overhead. We also
discuss how to use SDS and DNN-based detection schemes under
different situations.

Index Terms— Memory DoS attack, attack detection, cloud
computing.

I. INTRODUCTION

COMMERCIAL cloud providers (e.g., Amazon [12] and
Google [19]) provide elastic Infrastructure-as-a-Service

Manuscript received 26 February 2021; revised 26 September 2021;
accepted 14 January 2022; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor K. Chen. Date of publication 9 February 2022; date of
current version 18 August 2022. This work was supported in part by U.S. NSF
under Grant NSF-1827674, Grant CCF-1822965, and Grant OAC-1724845;
and in part by the Microsoft Research Faculty Fellowship under Grant
8300751. The conference version of this paper was published in ICPP
2020 [29] [DOI: https://doi.org/10.1145/3404397.3404465]. (Corresponding
author: Haiying Shen.)

Zhuozhao Li is with the Department of Computer Science and Engineering
and the Research Institute of Trustworthy Autonomous Systems, Southern
University of Science and Technology, Shenzhen 518055, China (e-mail:
lizz@sustech.edu.cn).

Tanmoy Sen and Haiying Shen are with the Department of Computer
Science, University of Virginia, Charlottesville, VA 22903 USA (e-mail:
ts5xm@virginia.edu; hs6ms@virginia.edu).

Mooi Choo Chuah is with the Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA 18015 USA (e-mail:
chuah@cse.lehigh.edu).

Digital Object Identifier 10.1109/TNET.2022.3144895

(IaaS) for tenants to deploy applications. To maximize the
resource utilization, cloud providers use the virtualization
techniques (e.g., hypervisors [13], [40], [45]) to place virtual
machines (VMs) from different tenants on the same physical
machine (PM). Even though current hypervisors can isolate
both memory and physical memory pages [51], most of the
underlying hardware memory resources of a PM are still
shared by its VMs from different tenants.

A malicious tenant can exploit the multi-tenancy feature
in the cloud to launch memory Denial-of-Service (DoS)
attacks [50], [51], which can cause severe resource contention
on the shared memory resources. There have been many
reports about the impacts of network-based DoS attacks. For
example, the cloud-based gaming services of Xbox Live and
Playstation were took down on Christmas day in 2015 [10].
Amazon EC2 cloud servers suffered from the largest DoS
attack ever [4]. These DoS attacks caused heavy short-term
effects (e.g, service downtime), as well as long-term effects
such as business losses and losses of consumers on the victims.
Similar to the network-based DoS attacks, memory DoS
attacks may slow down the victim services and cause severe
“economic loss” on the targeted enterprises. Recent research
has shown that the memory DoS attacks can be as severe as
the network-base DoS attacks. For example, results in [50],
[51] show that it is practical to launch memory DoS attacks
and the attacks can cause severe performance degradation
of distributed applications (i.e., Hadoop MapReduce) up to
3.7 times, and 38 times increase in the response time of an
e-commerce website.

So far, there are two types of memory DoS attacks: i) atomic
bus locking attack that keeps sending bus locking signals to
prevent other VMs from using the memory buses, and ii) cache
cleansing attack that keeps cleansing the cache lines of other
VMs to increase the cache misses. The goals of the memory
DoS attacks are similar as the goals of network DoS attacks,
i.e., preventing a victim from accessing certain resources
and degrading the performance of the victim applications,
which ultimately prevents the owner of the victim VM from
offering high quality services. As a prerequisite to perform
memory DoS attacks, a malicious tenant needs to intentionally
co-locate her/his VM(s) with victim VMs on the same PM,
which has been shown to be feasible in [36], [41], [48].

In spite of the severity of memory DoS attacks, exist-
ing solutions that partition memory resources among VMs
to enhance the performance isolation [11], [17], [49], [54],

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1903-6428
https://orcid.org/0000-0001-7677-3358
https://orcid.org/0000-0002-7681-6255
https://orcid.org/0000-0002-0117-0621

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1645

[55] are not efficient because they either waste the memory
resources or cannot defeat all types of memory DoS attacks.
Some studies [11], [55] propose to monitor the performance
of applications running on the VMs in a PM and then migrate
the impacted VMs to other PMs when there is resource
contention [13], [38], [40], [44]. However, VM migration
is not sufficient to handle memory DoS attacks because a
malicious tenant can easily co-locate with the VMs of the
targeted services again [36], [41], [48].

Zhang et al. [51] proposed to periodically detect the attacks
on a VM by examining whether the cache-related statistics
(e.g., the number of cache misses and cache accesses) in
real time follow the same probability distribution as those
statistics without attack. However, this detection method is not
robust for all applications, since it postulates that cache-related
statistics of an application follow a certain probability dis-
tribution at all times. Through our measurement studies,
we demonstrate that this method may generate many false
positives since cache-related statistics of an application may
not follow the same probability distribution at different times.
In addition, their method throttles VMs in order to col-
lect real-time statistics and such throttling generates large
performance overhead on the applications running on the
co-located VMs. In addition, to avoid large performance over-
head, such throttling cannot be performed frequently, which
increases the detection delay Thus, to effectively and effi-
ciently defeat the memory DoS attacks, it is crucial to design
detection schemes, which are robust to different applications,
responsive to the attacks, and lightweight (little performance
overhead).

In this paper, we first conduct a measurement study of
different types of cloud-based applications to understand
how the memory DoS attacks impact these applications.
We observe that the memory DoS attacks cause significant
increases/drops on the cache-related statistics. Besides, if an
application has periodic cache access pattern (denoted as
periodic application), we observe that its periodical time
period is enlarged when it is under the attacks. We propose
a Boundary-based Statistical Detection Scheme (SDS/B)
and a Period-based Statistical Detection Scheme (SDS/P)
that leverages the observations to detect the attacks. Both
SDS/B and SDS/P take the cache-related statistics collected
by hardware Processor Counter Monitor (PCM) as input and
detect whether there is an attack.

Although SDS can provide high detection accuracy,
it requires domain knowledge to profile a normal bound-
ary for every application beforehand and to tune several
statistics-based parameters, which is not general to var-
ious types of applications and adaptive attack scenarios.
In this extended version, with the recent success of applying
advanced machine learning to other challenging decision-
making domains, we investigate whether we can leverage
deep neural network (DNN) to provide an alternate to address
these challenges. Specifically, we exploit the long short-term
memory fully convolutional network (LSTM-FCN) [39] to
design a DNN-based scheme to detect different types of
memory DoS attacks.

We have implemented and evaluated SDS that includes
both SDS/B and SDS/P, and the DNN-based detection
scheme (DNN) on a real server. The evaluation demonstrates
that SDS and DNN outperform previous detection scheme
in [51] by up to 2% higher recall, up to 65% higher speci-
ficity, up to 40% shorter detection delay, and up to 7% less
performance overhead. In addition, the evaluation shows that
SDS has slightly higher detection accuracy than DNN, when
the attack scenario is relatively simple. However, when deal-
ing with adaptive attack scenario, DNN is more robust and
outperforms SDS.

The contributions of our paper are:

• We have conducted measurements to study how memory
DoS attacks impact the cloud applications.

• We have designed two lightweight, accurate and respon-
sive statistical-based detection schemes called SDS/B and
SDS/P to detect memory DoS attacks.

• We have designed a DNN-based detection scheme to
detect memory DoS attacks.

• We have implemented SDS and the DNN-based detection
schemes on a real server and demonstrated the effective-
ness of them in terms of detection accuracy, detection
delay and incurred performance overhead on applications
running on co-located VMs.

The rest of the paper is organized as follows. Section II
presents background and related works. Section III describes
our measurement study. Section IV and Section V describe the
design of statistics-based and DNN-based methods. Section VI
presents the experiment evaluation. Section VII discusses
the broader impact of this work and when to use SDS
and DNN-based detection schemes under different situations.
Section VIII concludes this paper with remarks on our future
work.

II. BACKGROUND

A. Shared Hardware Memory Resources

We briefly introduce the shared hardware memory resources
in clouds. Take the commonly used Intel processors [6] as an
example. In current datacenters, each server may have multiple
processor sockets, each of which has multiple CPU cores. Each
CPU core has its private L1 and L2 caches, while all the
cores share the same last level cache (LLC). Current Intel
processor has a ring-based bus to interconnect the CPU cores,
LLC, Integrated Memory Controllers (IMCs), system agent
and etc. Besides, the memory controller bus connects the LLC
to the schedulers in IMC, and the DRAM bus connects the
IMC schedulers to the DRAM. In this paper, we assume that
the memory buses and LLC may be shared across VMs from
different tenants.

B. Memory DoS Attacks

There are two types of memory DoS attacks [51].
Atomic Bus Locking Attack: In modern processors, several

atomic operations temporally lock all the internal memory
buses in the socket to guarantee atomicity [1], [6]. In the
atomic bus locking attack, the attack VM of a malicious tenant

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1646 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

generates continuous atomic locking signals by repeatedly
requesting atomic operations, which prevents the co-located
VMs from using the memory bus resources and degrades their
application performance.

LLC Cleansing Attack: A VM can launch a program to
evict the LLC cache lines used by other VMs on the same
server, which increases the cache miss rate of the programs
on those VMs and degrades the performance. In order to detect
cache lines frequently used by other VMs, the attack VM
first allocates a memory buffer covering the entire LLC on
its own VM. Next, the attack VM accesses some cache lines
belonging to each cache set and figures out the maximum
number of cache lines which can be accessed without causing
cache conflicts (i.e., evicting the lines loaded by itself). If this
number is smaller than the set associativity, it means that other
VMs have frequently occupied some cache lines in this set.
Finally, the attack VM launches the LLC cleansing attack by
repeatedly cleansing these cache lines.

C. Related Work

VM Co-Location: Ristenpart et al. [36] first identified the
threat of VM co-location in the cloud, which enables the
malicious tenant to conduct all LLC-based attacks includ-
ing memory DoS attacks. Although the cloud providers had
improved their cloud management schemes since then, the
works in [14], [41], [48], [51] were still able to achieve
co-location with various VM configurations in different cloud
platforms at a low cost (e.g., less than $8) in the order of
minutes.

LLC-Based Attacks: Previous studies show that a mali-
cious tenant can exploit the sharing feature in the cloud
to extract cryptographic keys from the victim VM through
cache side-channel attacks [31], [52], [53], or to transfer
information using cache operations [36], [47] in a way that is
not allowed by the cloud providers. Unlike these LLC-based
attacks that aim to extract or transfer information, the memory
DoS attacks aim to maximize the effects of resource contention
and hence degrade the performance of applications running on
the victim VM.

VM Migration: VM migration [13], [30], [38], [40], [44]
have been well studied in the cloud. However, simply perform-
ing VM migration when a VM’s performance is affected is not
sufficient to defeat memory DoS attacks, since the malicious
tenant can easily co-locate with a VM of the target tenant
again, as mentioned in [14], [41], [48], [51].

Performance Isolation: Many studies [11], [16], [17], [22],
[25], [31], [49], [54], [55] focused on enhancing the per-
formance isolation and proposed to partition the cache or
memory to different VMs based on fairness to mitigate the
resource contention. However, these solutions are not effective
in defeating the memory DoS attacks. The cache partitioning
disallows the sharing of LLC and may result in significant
wastage of LLC resources. In addition, the cache partitioning
cannot defeat the bus locking attack since the bus is still locked
during atomic operations.

Memory DoS Attack Detection: To the best of our knowl-
edge, only one previous work [51] proposed a scheme to detect

memory DoS attacks. They used the two-sample Kolmogorov-
Smirnov (KS) test [34] to examine whether the cache-related
statistics in real time follow the same probability distribution
as the statistics when there is no attack. This detection scheme
cannot provide accurate, responsive detection for some types
of applications, and generates large performance overhead on
the applications running on the co-located VMs due to the
throttling.

Unlike the work in [51], SDS uses low complexity
statistical-based methods to provide accurate, responsive and
lightweight detection of memory DoS attacks.

III. MEASUREMENT STUDY

To design an effective detection scheme against the memory
DoS attacks, it is essential to understand how the attacks
impact different types of applications. Currently, there are
many types of applications running in the cloud, including
database, machine learning, deep learning, data-intensive, web
search, etc. Thus, we select some representative applications
in different categories to study the impacts of memory DoS
attacks on them.

A. Applications and Metrics

The applications we select are listed below.
Machine Learning Applications: We select four applications

from HiBench [5] tools to study, namely Bayesian Classifica-
tion (Bayes), Support Vector Machine (SVM), k-means clus-
tering (k-means), and Principal Components Analysis (PCA).
The input data for these workloads is automatically generated
using the HiBench tools.

Database Applications: We select the Hive [3] queries
(Aggregation, Join, and Scan) performing typical OLAP trans-
actions described in [35]. The input data for these workloads
is generated using the HiBench tools.

Data-Intensive Application: TeraSort is a standard
data-intensive benchmark in Hadoop platform [2]. Its input
data is generated by the Hadoop TeraGen program.

Web Search Application: We select a web search application
PageRank from HiBench to study. PageRank is an algorithm
used by Google Search to rank websites in their search engine
results. The data source is generated from web data whose
hyperlinks follow a Zipfian distribution.

Deep Learning Application: We select FaceNet, a Tensor-
Flow implementation of the face recognizer described in [37].
The input data is the face recognition training dataset provided
by Microsoft [7].

The metrics we study for these applications are listed as
follows. Such cache-related statistics can be collected using
the PCM tool every TPCM seconds.
The number of LLC accesses every TPCM time (denoted
as AccessNum). For the bus locking attack, we measure
AccessNum because such an attack prevents the victim VM
from using the memory buses to access memory.
The number of LLC misses every TPCM time (denoted
as MissNum). For the LLC cleansing attack, we measure
MissNum because such an attack frequently evicts the data

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1647

Fig. 1. KStest results of TeraSort – no attack launched.

of the victim VM from the LLC, which requires the victim
VM to read the data from the main memory.

We conducted the measurement study on a local server
with configuration comparable to a cloud server. We did not
experiment on a real cloud server because the PCM tool
requires privilege control to the hypervisor, which is not
provided to users in the cloud. Specifically, the server has one
CPU Intel Xeon E5-2660 with 14 physical cores (28 logical
cores due to hyper-threading) and 32GB RAM. The LLC
has 35MB and 20-way set-associative. We installed KVM
hypervisor on the server and created 2 VMs with Ubuntu
14.04 installed, one functioning as the attack VM and the other
as the victim VM.

B. Insufficiencies of KStest

In [51], given a server that provides a detection service for
memory DoS attacks, the detection system (we call it KStest)
periodically (every LR seconds) performs the following oper-
ations for a PROTECTED VM that requests this detection
service:
(1) It first stops the executions of all other VMs except the

PROTECTED VM using execution throttling, and collects
a set of cache-related statistics of the PROTECTED VM
for WR seconds as reference samples, which represent
the cache-related statistics under no attack. A sample
is defined as a data point of AccessNum or MissNum
collected by PCM tool.

(2) It resumes the running of all other VMs and performs the
following two steps once every LM seconds: (i) It collects
a set of statistics for WM seconds as monitored samples
for the PROTECTED VM; (ii) Next, it compares if the
reference samples and the monitored samples follow the
same distribution. If the distributions are different for four
consecutive times (4LM seconds), then it will declare that
there is an attack.

In [51], the authors show that KStest works well for applica-
tions including web, database, memcached and load-balancer
applications in e-commerce. However, they did not evaluate
many other typical cloud-based applications. To evaluate the
effectiveness of KStest of other applications, we ran TeraSort
on the victim VM without any attack. In the experiments,
we followed the same KStest steps and settings of parameters
as in [51], i.e., TPCM = 0.01s, WR = WM = 1s, LM = 2s,
and LR = 30s.

The four plots in Figure 1 show the KStest results of
TeraSort for four LR intervals (from twenty LR intervals)

when there is no attack. In the plots, a value 1 indicates that
the two sets of samples have distinct probability distributions;
a value 0 indicates that they have the same distribution.
We see that even when there is no attack, the probability
distributions for TeraSort at different times may not be the
same (i.e., KStest = 1). All these four plots indicate that this
KStest method will declare there is an attack since there are
more than four consecutive “1”s in the plots. Besides, from the
KStest results of all the twenty LR intervals in our experiment,
we found that more than 60% of them indicate that there is an
attack. Thus, applying KStest to detect attacks is highly likely
to generate many false positives.

We also tested other typical cloud applications. From the
KStest results of all twenty LR intervals in our experiments,
KStest declares an attack around 30% of the times in Bayes,
35% in SVM, 20% in k-means, 60% in PCA, 40% in Aggre-
gation, 40% in Scan, 30% in PageRank, and 55% in FaceNet
when the attack is absent.

C. Impact of Memory DoS Attacks

To study the impact of the attacks, we collected the
cache-related statistics of each application for 120 seconds;
for the first 60 seconds, the application ran normally without
being attacked, but in the next 60 seconds, the application was
under either a bus locking attack or LLC cleansing attack.
In the result figures below, the red lines separate the two
stages – without and with attack.

Bus Locking Attack: Figures 2(a), 2(c), 2(e), 2(g), 3(a), 3(c),
3(e), 4(a), 5(a) and 6(a) show the AccessNum over the 120s
for five different types of applications under the bus locking
attack. From all the figures, we notice that the AccessNum for
every application suffers significant drop after the bus locking
attack is launched. This is because the bus locking attack sends
the lock signals to lock all buses in the processor socket, which
prevents the applications from accessing LLC.

In addition, we clearly see that PCA in Figure 2(g) and
FaceNet in Figure 6(a) have periodic patterns of AccessNum,
i.e., the same LLC access patterns repeat periodically with
a regular time period. This is because such applications
often repeatedly perform the same computations on different
batches of data. We call such applications with periodic
patterns in cache-related statistics periodic applications, and
other applications that do not have such periodic patterns as
non-periodic applications.

When a periodic application is under attack, in addi-
tion to the drop in AccessNum, we also observe from
Figures 2(g) and 6(a) that the period at which such patterns
repeat themselves increases. This can be explained as follows:
Originally, the application requires a certain amount of time to
finish processing a batch of data. When it is under attack, the
application requires a longer time to finish its computations
on the same batch of data.

LLC Cleansing Attack: Figures 2(b), 2(d), 2(f), 2(h), 3(b),
3(d), 3(f), 4(b), 5(b) and 6(b) show the MissNum over the 120s
for five different types of applications under LLC cleansing
attack. We observe that the MissNum for all the applications
increases after the LLC cleansing attack is launched. This

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1648 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 2. Machine learning applications.

phenomenon occurs because the cleansing attack continuously
cleanses the LLC, which increases the MissNum. In addition,
the period of the periodic applications also increases (shown
in 2(h) and 6(b)) after the LLC cleansing attack starts since
more time is needed to process the same batches of input data.

Exploration of Viable Solutions: In order to design a detec-
tion scheme, we explored different approaches to analyze the
cache-related statistics. For example, we expected that when
there is no attack, the cache-related statistics at different times
would be more correlated with each other than that when there
is an attack. Thus, we explored the spectral coherence [33],
cross-correlation [43] and Pearson correlation [28] approaches
on many applications including Bayes, SVM, k-means, PCA,
Aggregation, Join, Scan, TeraSort, PageRank and FaceNet.
Unfortunately, we have not found a viable scheme to leverage
these approaches to detect the memory DoS attacks.

We summarize our observations in the measurement:

• Observation(1): All applications suffer a significant
AccessNum decrease in the bus locking attack and a sig-
nificant MissNum increase in the LLC cleansing attack.

Fig. 3. Database applications.

Fig. 4. Data-intensive applications.

Fig. 5. Web search applications.

• Observation(2): The periodic applications show pro-
longed periodicity for both kinds of attacks.

Based on Observation(1), we design SDS/B that exploits
the decrease/increase in the cache-related statistics to detect
the attacks. Based on Observation(2), we propose SDS/P for

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1649

Fig. 6. Deep learning applications.

periodic applications that leverages the change in their periods
to detect the attacks.

IV. DESIGN OF SDS

In this section, we introduce the design of SDS to detect
the memory DoS attacks in the cloud.

A. Data Preprocessing

To detect the attacks, the cloud providers run the PCM tool
on the hypervisor of each server to collect raw cache-related
statistics. For ease of presentation, we use {A1, A2, . . .} to
denote the real-time statistics (i.e., AccessNum for bus locking
attack and MissNum for LLC cleansing attack). We define a
time series as a series of data points collected/computed in
real time.

Due to the significant decrease (increase) in the cache-
related statistics, one naive detection approach is to trigger the
alarm when a data point Ai drops (increases) by a threshold
(e.g., 50%) of prior data point Ai−1. However, it is not unusual
that the cache-related statistics of many practical applications
to have random variations over time. Thus, directly threshold-
ing the raw data may lead to inaccurate detection of attacks.

To overcome the challenge of random variations, we pro-
pose to use sliding window based moving average (MA) [46].
In MA, we use W to denote the window size and ΔW to
denote the step size for moving windows. We compute the
average of W data points at a time. When ΔW new data
points become available, we slide the window ΔW ahead
and a new average of W data points in the new window
is computed. This process is repeatedly conducted in real
time. We denote Mn as the average of the raw data points
{A1+n∗ΔW , A2+n∗ΔW , . . . , AW+n∗ΔW } in the nth window,
i.e.,

Mn =
1
W

W+n∗ΔW∑
i=1+n∗ΔW

Ai. (1)

Based on the ahove process, by the nth window, we will have
a time series M = {M0, M1, . . . , Mn}.

To smooth the data further, instead of using the simple MA
that gives all the past observations equal weight, we use a
well-known enhancement called exponential weighted mov-
ing average (EWMA) which assigns exponentially decreasing
weights to prior data over time, i.e.,

Sn =

{
M0, if n = 0
(1 − α)Sn−1 + αMn, otherwise

(2)

where Sn is smoothed result at the nth window, and 0 < α < 1
is the smoothing factor. A larger value of α reduces the level
of smoothing and gives higher weight to recent data.

B. Detection Design

In this section, we describe SDS/B for arbitrary applications,
and SDS/P for periodic applications.

1) SDS/B: Considering that the bus locking attack and the
LLC cleansing attack present different impacts on the appli-
cations (i.e., drops in AccessNum for bus locking attack and
increases in MissNum for LLC cleansing attack), we propose
SDS/B, which is based on the fact the collected cache-related
statistics typically lie within a range with a lower and upper
bound so that we can flag an anomaly when the collected
statistics go out of bound.

When there is no attack, let us denote the mean and the
standard deviation of the EWMA time series as μE and
σE , respectively. We propose to define a normal range as
[μE−kσE , μE +kσE], where k > 1 is a pre-defined boundary
factor. When an EWMA value Sn becomes available in real
time, we check if the condition satisfies the following

Cn = (Sn < μE−kσE) or (Sn > μE + kσE). (3)

SDS/B triggers an attack alarm at time n if the EWMA values
are out of the normal range consecutively for HC times. Such
a threshold is used to avoid false positives.

Several questions still need to be answered:
How to Determine the Mean μE and the Standard Deviation

σE of Each Benign VM? It is reasonable to assume that a
benign VM is in a safe state (i.e., not under any attack)
immediately after it is newly started or migrated, since the
malicious tenant needs some time to co-locate her/his VM
with the VM. Thus, the cloud providers can collect the
cache-related statistics of a benign VM at that time.

How Fast Can the Attacks Be Detected? When there is an
attack, the EWMA values are expected to become anomalous.
Since SDS/B needs HC consecutive anomalies to trigger the
alarm, the time to detect the attack is no shorter than collecting
HC EWMA values. Recall from Equations (1) and (2) that
only when ΔW new raw data points are collected in real
time, SDS/B will compute the next EWMA value. The time
for a new raw data point depends on the sampling time TPCM

of the PCM tool. As a result, the shortest detection delay for
SDS/B is HC · ΔW · TPCM time.

How to Select Appropriate Constant k and HC to Guarantee
High Detection Accuracy? The cloud provider needs to select
appropriate k and HC to guarantee that the attacks can
be detected with a certain confidence level. Since there are
many applications running in the cloud, the chosen parameters
should work for all applications so that the cloud providers do
not need to use different values for different applications.

If we can model the cache-related statistics of all
applications using some common probability distributions
(e.g., Gaussian Distribution), we could derive the parameters
with certain confidence using the properties of the modeled
distribution. However, due to the large variety of cloud-based
applications, it is hard to use one probability distribution to

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1650 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 7. Detection example of k-means.

summarize all applications. Thus, we leverage the Chebyshev’s
inequality [21] that can be applied to any probability distrib-
utions to infer the parameters for all the applications so that
a certain confidence level is guaranteed. Let Pr(·) represent
the probability, and X be a random variable with mean μ
and non-zero standard deviation σ. The Chebyshev’s inequality
describes that

Pr(|X − μ| ≥ kσ) ≤ 1
k2

. (4)

Based on Chebyshev’s inequality, one can argue that the
EWMA values without attack will be outside the range (condi-
tion Cn) with a probability of at most 1

k2 and HC consecutive
occurrences of such condition occurs with a probability of at
most (1

k2)HC . Thus, k and HC can be chosen based on the
desired confidence level that there is an attack when an alarm
is triggered. For example, if we desire a 99.9% confidence, the
probability that a false alarm is triggered should be as low as
0.001. Based on Equation (4), we could have many options to
select k and HC , e.g., k = 2, HC = 6 or k = 1.125, HC = 30.
Typically, we expect that the k (i.e., the normal range) is
small to avoid false negatives but sufficiently big to avoid
false positives. Given a confidence level, HC decreases as k
increases and vice versa. Thus, there is a tradeoff between k
and HC : larger k may generate false negatives while larger
HC may result in higher detection delay. Experiments in
Section VI-C show that setting k close to 1 achieves a good
tradeoff.

Procedure: We show how SDS/B works for an application.
We first profile the μE and σE of the application with
W = 200, ΔW = 50 and select k = 1.125. If we expect
to achieve 99.9% confidence level, based on Equation (4),
we need to select HC = 30. Take k-means application as
an example, Figure 7 shows its monitored EWMA time series
in real time and the normal range (i.e. [μE − 1.125σE, μE +
1.125σE]). We see that before the bus locking attack starts (red
line), the EWMA values drop below the normal bound but do
not reach HC times, and hence SDS/B does not trigger the
alarm. After the attack starts, the EWMA values drop below
the normal bound again and this time the alarm is triggered
at around window 150.

2) SDS/P: We propose SDS/P to leverage Observation (2)
described in Section III. For periodic applications, both SDS/B
and SDS/P can be used independently to detect the attacks.
Our experiments in Section VI show that SDS/B and SDS/P
can both achieve high detection accuracy, low detection delay
and low performance overhead. We could also use both

schemes together for periodic applications to increase the
detection accuracy.

Specifically, SDS/P computes the period of MA
M = {M0, M1, . . .}, rather than the raw data or EWMA,
since MA reduces the variations of raw data as mentioned in
Section IV-A which increases the detection accuracy, while
the EWMA time series of a periodic application may not
have periodic patterns.

To compute the period of a time series, we could use the
Discrete Fourier Transform (DFT) [15] to locate the dominant
frequency, which is defined as the frequency that has the
maximum amplitude and is equal to the reciprocal of the
period. However, DFT may detect false frequencies that do not
exist in the time series [20]. Auto Correlation Function (ACF),
another method for detecting repeated patterns, can avoid
false detection of frequencies of a time series [18], but may
result in the detection of multiples of a true period [42]. For
example, given a time series that has a period of 30 seconds,
{60s, 90s, . . .} are also falsely considered as the periods in
ACF. Therefore, solely using DFT or ACF cannot accurately
determine the true frequencies in a time series. To more
accurately find the period, we adopt the approach (denoted
as DFT-ACF) in [42] that first generates candidate periods
using DFT and then uses ACF to identify the real period of
the EWMA time series.

However, we need to solve two challenges before we can
use DFT-ACF in [42]. First, we need to check whether an
application is periodic. As in Section IV-B.1, we can use
DFT-ACF immediately after a VM is newly started or migrated
to check if there exists a relatively constant period where
MA patterns repeat. If yes, we declare the application to be
periodic.

What Size of a MA Time Series Should Be Used to Find the
Period? We define the size of a time series as the number of
data points it contains. Choosing an appropriate size of a MA
time series for computing the period is important. When an
attack starts running, the abnormal MA values start to appear.
If SDS/P uses a long MA time series to compute the period,
DFT-ACF may still infer a normal period since normal MA
values still dominate the time series. As a result, it may take a
long time for SDS/P to detect the abnormal period, resulting
in long detection delay. In addition, the DFT computation of
a time series has a computation complexity of O(N log N),
where N is the size of the time series. Larger N is going to
result in higher computation cost.

To tackle such challenges, we propose to monitor the MA
time series with a size of WP . Each time, when ΔWP MA
values become available, we compute the period of the latest
WP MA values and check if the newly computed period is
the same as the prior normal period. When HP consecutive
computed periods are not the same as the normal period of the
application, SDS/P triggers the alarm that there is an attack.
Specifically, we select WP = 2p, where p is the period of
the cache-related statistics without attack. This is because 2p
MA values are sufficient to determine the correct period of
the applications in the case of no attack. On the other hand,
ΔWP determines the computation overhead and detection
delay – intuitively, smaller ΔWP results in higher computation

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1651

Fig. 8. Detection example of FaceNet application.

overhead but smaller detection delay and vice versa. Therefore,
ΔWP should be selected to balance the tradeoff between
the computation overhead and detection delay to make both
acceptable. Our sensitivity analysis in Section VI-C shows that
the computation overhead is negligible and hence we can select
a small ΔWP (e.g., 10).

How Fast Can an Attack Be Detected? Similar to the
analysis in Section IV-B.1, the detection scheme can detect
the attacks as fast as HP · ΔWP · ΔW · TPCM second.

Procedure: We show how SDS/P works for a periodic
application. We first profile how the cache-related statistics
of the application repeats every p MA values in its MA time
series using W = 200, ΔW = 50. We then select WP = 2p,
ΔWP = 10, HP = 5. When the PCM tool starts to monitor
the cache-related statistics, the detection approach derives the
MA time series and computes the period in real time. Take
FaceNet application as an example, Figure 8(a) shows its MA
time series in real time and Figure 8(b) shows the computed
period in real time. It shows that before the attack starts, the
period remains constant at around 17. However, after the attack
starts, the period deviates from the normal period 5 times,
which triggers the alarms.

C. Implementation

We implement a prototype system that combines both
SDS/B and SDS/P, namely SDS. In our implementation,
we use PCM [9] tools to measure the real-time cache-related
statistics every TPCM seconds (configurable). SDS first uses
the period detection method in SDS/P to check whether an
application VM has periodic patterns or not. If the application
VM has a periodic pattern, SDS uses both SDS/B and SDS/P
to monitor the application VM to achieve a higher accuracy;
otherwise, SDS leverages SDS/B for attack detection. SDS is
deployed on the hypervisor on each physical machine and can
be provided by the cloud providers as a service.

V. DNN-BASED DETECTION SCHEME

While we have demonstrated in the evaluation (Section VI)
that SDS is highly effective in detecting memory DoS attacks,
SDS falls short in two aspects. First, SDS involves tunings
of several parameters based on the system requirements to
balance the tradeoff between accuracy and detection delay,
although these parameters are robust and it is not necessary
to change the parameters frequently. Second, SDS requires to
profile a normal boundary for every application based on its

Fig. 9. Architecture of LSTM-FCN.

mean μE and standard deviation σE , and hence SDS is not
general to all applications.

In this section, we aim to explore a new detection scheme
that i) does not have many parameters to tune and ii) is
general to all applications. With the recent success of advanced
machine learning techniques to decision-making domains,
we are inspired to investigate whether Deep Neural Net-
work (DNN) can provide a viable alternative to memory DoS
attack detection.

A. LSTM-Based Design

Since we would like to design a detection scheme that
is general to all types of applications, the scheme needs
to be capable to i) determine the type of an application
from a series of cache-related statistics and ii) determine
whether the statistics are normal or not. Indeed, both of
these two capabilities are classification problem. We notice
that Long Short Term Memory Fully Convolutional Network
(LSTM-FCN) [23], [39] has been proposed to classify the time
series data. Thus, we propose to exploit the LSTM-FCN (as
shown in Figure 9) to design a DNN-based detection scheme
for memory DoS attacks in this paper.

LSTM-FCN consists of a fully convolutional network
(FCN) block and a long short-term memory (LSTM) block,
as shown in Figure 9. FCN consists of three temporal convo-
lutional blocks which are typically used as feature extractors.
Then a global average pooling is applied following the final
convolution block to reduce the number of parameters in the
model prior to classification. The filter sizes of three stacked
temporal convolutional blocks are 128, 256 and 128, respec-
tively. For LSTM, it is used to extract temporal dependencies
among input data. Specifically, the input is first conveyed into
a dimension shuffle layer. The transformed time series from
the dimension shuffle is then passed into the LSTM block.
Each LSTM block comprises of an attention LSTM layer with
256 cells, followed by a dropout. The attention mechanism
is more accurate since it allows the network to learn where
to pay attention in the input sequence for each item in the
output sequence, which helps to improve the accuracy of
the classification for a long sequence of input. Finally, the
outputs of the global pooling layer and the LSTM block are
concatenated and passed onto a softmax classification layer.

We propose to use two such cascaded LSTM-FCNs to form
the DNN-based detection scheme, as shown in Figure 10. The
first LSTM-FCN aims to categorize the application, while the
second one is responsible for detecting the type of attack. For
the first LSTM-FCN, the input is a sliding window of the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 10. Architecture of DNN-based detection scheme.

cache-related statistics (i.e., AccessNum and MissNum), and
the output is the type of application. The output of the first
LSTM-FCN is then sent as input to the second one to decrease
the search space.

B. Implementation

To prepare the training dataset for our DNN model, we run
different types of applications with attack and without attack,
and collect the cache-related statistics (including AccessNum
and MissNum) for them. As in Section IV-A, the data is
pre-processed using the sliding window method with a window
size of W and a sliding step size of ΔW . LSTM considers
a window of W raw data points as a single time step and
the convolution layer analyzes each data point of the time
series individually throughout the window. This facilitates that
fully convolutional block and LSTM block perceive the same
input sliding window from two different views. The fully
convolutional block views the input as a univariate time series
with multiple time steps. On the other hand, LSTM considers
the input as a multivariate time series and processes each
window as a different time step. For example, if the input is
a sliding window of length 200, the fully convolutional block
receives the data in 200-time steps, while the LSTM block in
the proposed architecture receives the input as a multivariate
time series and processes it as a single time step.

The sample size we use for training is 20137. Similar to
the setting in [23], the number of epochs is set to 3000 in
this paper, and the DNN model is trained via the Adam
optimizer [26], with an initial learning rate of 10−3 and final
learning rate of 10−4. The learning rate is reduced by a
factor of 1/ 3

√
2 for every 150 epochs of no improvement on

validation score. We note here that we only aim to show that
it is feasible to use DNN to detect the memory DoS attacks,
and in practice a cloud provider can collect more training data
from many applications to train its own model for each tenant.
As SDS, the DNN-based detection scheme triggers an alarm
after HD consecutive anomaly windows.

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation of the SDS and
DNN-based schemes.

A. Experimental Setup

1) Environmental Setup: We ran each of our detection
schemes on a server using the same hardware mentioned in
Section III-B. As in [51], we deployed a victim VM and
8 other VMs to share the resources on the server. Among
these 8 VMs, one of them was the attack VM that performed
the memory DoS attacks (bus locking attack or LLC cleansing
attack), and the other 7 VMs were all benign VMs that

TABLE I

PARAMETERS IN THE EXPERIMENT

TABLE II

ABBREVIATIONS OF APPLICATIONS

ran normal Linux utilities such as sysstat and dstat. The
pre-selected victim VM ran one of the applications introduced
in Section III.

2) Parameters: The parameters involved in the SDS- and
DNN-based schemes are shown in Table I. The parameters
were selected empirically to achieve a balance between detec-
tion accuracy and detection delay.

3) Attack Scenarios and Baseline: We consider two scenar-
ios in this evaluation.

Scenario 1: We ran each benign application on the victim
VM for 600 seconds. The attack VM has only two attack
states: enabled and disabled. During the first 300 seconds,
we did not launch any attacks on the attack VM (Stage 1).
In the next 300 seconds, we performed the bus locking attack
or LLC cleansing attack from the attack VM (Stage 2).

Scenario 2: Different from Scenario 1 that has only two
stages, Scenario 2 consists of many stages—the attack VM
keeps enabling and disabling the attacks for random durations
in a round-robin manner. Specifically, we ran each benign
application on the victim VM for 600 seconds, and the
durations of the two attack states follow a uniform distribution
in the range of [10, 50] seconds. Scenario 2 is more adaptive
than Scenario 1 and we aim to use Scenario 2 to simulate
the case where the attack VM may attempt to use adaptive
approaches to evade the detection schemes.

B. Evaluation Results

In this section, we evaluate the detection accuracy, detection
latency, and performance overhead of SDS and DNN over
various applications. Table II summarizes the abbreviations of
the applications in the results.

1) Scenario 1: Detection Accuracy: To evaluate the
accuracy, we will use the following metrics.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1653

Fig. 11. Recall results under Scenario 1.

Fig. 12. Specificity results under Scenario 1.

• Recall is defined as true positives
true positives+false negatives , which mea-

sures the ability to detect an attack when it is present.
• Specificity is defined as true negatives

true negatives+false positives , which

measures the ability to correctly infer no attack when
the attack is absent.

Figures 11(a) and 11(b) show the recall results of bus
locking attack and LLC cleansing attack, respectively. We see
that the median recalls of both SDS and KStest are 100%,
regardless of the applications or the types of attacks, indicating
that there are few false negatives. Based on the 10th and
90th percentiles, the recall of SDS is slightly better (1-2%)
than KStest. The recall of DNN for all applications are
around 90 - 95%, which is slightly lower than that of SDS
and KStest.

Figures 12(a) and 12(b) show the specificity results of bus
locking attack and LLC cleansing attack, respectively. SDS
achieves a specificity around 90-100% and DNN achieves
a specificity around 85-95%, while KStest only achieves a
specificity around 30-80% due to many false positives. This
demonstrates the outstanding performance of SDS and DNN
in terms of reducing the number of false positives.

In addition, for periodic applications (PCA and FaceNet),
we also evaluated SDS/B and SDS/P. SDS/B and SDS/P
independently exploit our Observations (1) and (2) mentioned

Fig. 13. Detection delay results.

in Section III, respectively. The figures show that SDS/B can
detect the attacks with a 100% recall and 94-97% specificity,
and SDS/P can detect the attacks with 100% recall and 93-94%
specificity. Therefore, we see that solely using SDS/B and
SDS/P can achieve high recall and specificity for periodic
applications. Using both approaches, SDS improves SDS/B
and SDS/P by 3-6% and 5-6% of specificity, respectively, since
applying both approaches can eliminate some false positives.
The results demonstrate the effectiveness of SDS, SDS/B and
SDS/P in terms of detection accuracy.

Detection Delay: We also evaluated the detection delay of
SDS. We define the detection delay as the duration between
the time when an attack is launched and the time when the
attack is detected.

Figures 13(a) and 13(b) shows the detection delay of differ-
ent applications under bus locking attack and LLC cleansing
attack, respectively. For both types of attacks, the detection
delays of SDS and DNN are in the range of 15-30 seconds
and 5-10 seconds, respectively, while the detection delays of
KStest were in the range of 20-50 seconds. The detection
delays of SDS and DNN are at least 5-20 seconds shorter
than KStest’s. Such improvement in the detection delay is
significant since previous study [8] in Amazon shows that
100 ms increase in the webpage loading time decreased sales
by 1 percent. Both SDS and DNN have faster response
time than KStest, because they continuously examines if the
time series is anomalous in real time. On the contrary, the
KStest needs to perform multiple rounds of KS tests, each of
which requires KStest detector to throttle the executions of
other VMs while it acquires reference samples of a protected
VM. Such collection cannot be too frequent as it delays the
execution of all applications, which indirectly increases the
detection delay of the KStest approach.

DNN is more responsive than SDS, since DNN can extract
more features from all over the time series, while SDS only
creates a normal range based on the mean and standard
deviation of the time series and loses much information about
the time series. Thus, DNN knows more features of the time
series and can response much quicker to the anomaly cache-
related statistics.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 14. Performance overhead results.

Fig. 15. Recall results under Scenario 2.

The figures also show the detection delay of SDS/B and
SDS/P for periodic applications. We see that SDS/P has larger
detection delay (around 10 seconds) than SDS/B because of
higher computation cost of DFT-ACF calculation. However,
compared with KStest, the detection delays of both approaches
are still shorter than KStest, indicating the responsiveness of
SDS/B and SDS/P.

Performance Overhead: In SDS, the hypervisor on each
server uses PCM to measure the real-time cache-related statis-
tics and runs a program to analyze the statistics. We measured
the performance overhead of SDS on the applications running
on the VMs. In this experiment, we do not launch any attacks.
Figure 14 shows the normalized execution times (normalized
to the execution time without running any detection schemes)
of different applications running on the VM when the hypervi-
sor employs different detection schemes. We see that SDS has
very minimal impact on the execution times (1-2%, computed
by normalized execution time minus one) of the applications
running on the VMs, in comparison to 2-5% of the DNN and
3-8% of the KStest approach. This is because SDS leverages
lightweight PCM and simple algorithm to detect the attacks,
which generates negligible performance overhead comparing
to KStest that uses throttling to collect the reference samples.
The figure also shows that SDS/B and SDS/P for periodic
applications generate negligible performance overhead. DNN
results in slightly higher overhead than SDS due to the high
computation cost of DNN algorithm.

2) Scenario 2: Note that we only show the results of detec-
tion accuracy in Scenario 2, since the results of performance
overhead and detection delay are similar to those in Scenario 1.

Figures 15(a) and 15(b) show the recall results under
Scenario 2. Figures 16(a) and 16(b) show the specificity results
under Scenario 2. DNN achieves a detection accuracy around

Fig. 16. Specificity results under Scenario 2.

80%-95% and performs much better than SDS and KStest in
terms of both recall and specificity. This is mainly because
the attacks in Scenario 2 were launched for random durations
in the range of [10, 50]. In this adaptive attack scenario, DNN
benefits from its faster response to memory DoS attacks and
thus can detect most of the attacks accurately, while SDS and
KStest cannot achieve so when the attacks last for relatively
short durations.

C. Sensitivity Analysis

In this section, we evaluate the sensitivity of some key para-
meters for SDS. In the experiments below, unless the varying
parameter and otherwise specified, we use the parameters in
Table I.

Due to space limitation, for the parameters regarding to the
detection of periodic applications, we present the results of
FaceNet only. For other parameters, we only present the results
of k-means even though we have tested other applications and
obtained the same conclusions. Notice that we do not present
the results of performance overhead since they are not sensitive
to the parameters – SDS still generates negligible performance
overhead (up to 2%) even with the parameters that result in
the largest performance overhead in our selection range. All
the experiments were conducted under Scenario 1.

Smooth Factor α: In this experiment, we varied α in the
range [0.0, 1.0]. Notice that when α = 1.0, the EWMA time
series is equivalent to the MA time series. Figure 17(a) shows
the recall and specificity versus α. We see that as α increases,
the recall and specificity decreases slightly. This is because a
large α reduces the smoothing of EWMA values and generates
a few false positives and false negatives due to the random
variation. Nevertheless, the recall and specificity remain close
to 1 over a wide range of α, i.e., [0.2, 0.4]. Figure 17(b) shows
the detection delay versus α. We see that the detection delay
decreases slightly as α increases. This is because after an
attack is launched, the EWMA values go outside the normal
range faster with larger α.

Boundary Factor k: In this experiment, we varied k in
the range [1.1, 2.0] and the consecutive violation threshold
HC was adjusted to keep a confidence of 99.9% based on
Equation (4). Figure 18(a) shows the recall and specificity

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1655

Fig. 17. Sensitivity of α.

Fig. 18. Sensitivity of k.

Fig. 19. Sensitivity of W for SDS.

versus k. We see that the specificity increases slightly as k
increases, since there are fewer false positives. On the other
hand, the recall decreases slightly as k increases. This is
because the detection scheme sometime fails to detect the
attacks due to a larger k, which results in some false negatives.
Nevertheless, we see that both recall and specificity remain
closed to 1 over a wide range of k values, i.e., [1.1, 1.5], which
allows the cloud providers to adjust k based on their desire
for fewer false negatives or fewer false positives.

Figure 18(b) shows the detection delay versus k. As k
increases, the consecutive violation threshold HC decreases.
Thus, the detection delay is shorter as k becomes larger.
However, with a larger k, when the attack is launched, the
EWMA values may drop outside the boundary range slower
than that with a smaller k, which incurs a delay of a few
seconds and offsets the benefit of smaller HC .

Window Size W : In this experiment, we varied W in the
range [100, 1000]. Figure 19(a) shows the recall and specificity
versus W for the SDS detection scheme. We observe that
varying W does not change the detection accuracy much. Only
when W is 100, the recall is not 100% because W is too small
to eliminate the variations in the raw data. Figure 19(b) shows
the detection delay versus W . We see that the detection delay

Fig. 20. Sensitivity of W for DNN.

Fig. 21. Sensitivity of ΔW for SDS.

Fig. 22. Sensitivity of ΔW for DNN.

increases slightly as W increases. This is caused by the fact
that the EWMA values take a longer time to go outside the
normal range with a larger W value.

Figures 20(a) and 20(b) show the accuracy and delay versus
W for the DNN detection scheme. Varying the window size W
demonstrates similar impacts to DNN as SDS. First, varying
W does not change the detection accuracy of DNN much.
Second, the detection delay of DNN increases slightly as W
increases, since it also takes longer time for DNN to detect
a change on the time series as W increases. To summarize,
we should select a small W but still sufficiently large (e.g.,
200) to better eliminate the variations in the raw data while
minimizing the detection delay.

Sliding Step Size ΔW : In this experiment, we varied
ΔW in the range [20, 200]. Figures 21(a) and 21(b) show
the accuracy and detection delay versus ΔW for SDS.
Figures 22(a) and 22(b) show the accuracy and detection
delay versus ΔW for DNN. We see that for both SDS and
DNN, varying ΔW has similar impacts. It does not change
the detection accuracy. However, the detection delay increases
as ΔW increases. To summarize, we should select a small
ΔW (e.g., 10-50) in practice to reduce the detection delay.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1656 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 23. Sensitivity of WP .

Fig. 24. Sensitivity of ΔWP .

Window Size WP in SDS/P: In this experiment, we varied
WP in the range [2p, 6p]. Figure 23(a) shows the recall and
specificity versus WP . We observe that varying WP does
not change the detection accuracy. Figure 23(b) shows the
detection delay versus WP . We see that the detection delay
increases as WP increases. This is because the larger WP ,
the slower the abnormal period can be detected, as mentioned
Section IV-B.2. Thus, we expect WP to be small enough but
sufficiently large (e.g., 2p) to compute the period and reduce
the detection delay.

Sliding Step Size ΔWP in SDS/P: In this experiment,
we varied ΔWP in the range [5, 25]. Figure 24(a) shows the
recall and specificity versus ΔWP . We observe that varying
ΔWP does not change the detection accuracy. Figure 24(b)
shows the detection delay versus ΔWP . We see that the
detection delay increases as ΔWP increases. Thus, we should
select a small ΔWP (e.g., 5-10) in practice to reduce the
detection delay.

VII. DISCUSSION

In this section, we discuss the broader impact of this work,
as well as when to apply SDS and DNN under different
situations.

Broader Impact: In practice, the performance of the appli-
cations running on co-located VMs may be impacted by each
other occasionally and unintentionally [27], even though these
co-located VMs are from non-malicious tenants and only
run benign applications. From the tenants’ perspectives, they
expect cloud providers to be able to detect the interferences
and to take proper actions (e.g., VM migrations) when the
interferences occur to prevent severe performance degrada-
tion of their applications. The general ideas of our work
can be applied here to detect the performance interferences
among co-located VMs. Moreover, as container technologies

(e.g., Docker and Singularity) become popular in parallel and
distributed computing, we see the broader impact of our work
on these areas.

When to Use SDS and DNN-Based Detection Schemes? As
demonstrated in Section VI, both SDS and DNN schemes can
detect the memory DoS attacks accurately and responsively,
with low performance overhead. SDS and DNN have different
pros and cons. When the attack scenario is relatively simple
(i.e., Scenario 1), SDS has slightly higher detection accuracy
than DNN. However, when dealing with the adaptive scenario
(i.e., Scenario 2), DNN is more robust and can provide higher
detection accuracy than SDS.

Based on these facts, we argue that it is more appropriate
to use SDS to detect the performance interferences among
co-located VMs under the normal scenario, where all the
application VMs run normally. In this case, the tenants would
expect higher accuracy and hence it is straightforward to apply
SDS for the performance interference detection. On the other
hand, DNN is more suitable for detecting the memory DoS
attacks in practice, as DNN is more robust to the adaptive
attack scenarios and can provide faster response, even the
attackers adapt the attack launching patterns intentionally.

Assumptions: It is worth mentioning that our proposed
detection schemes assume that we can profile the cache-related
statistics of cloud applications to gather some “ground truth”
beforehand. This assumption is based on the fact that many
cloud applications are recurring and have predictable charac-
teristics [24], [32].

Besides, an application may change dramatically under
different situations (e.g., different times in a day). To address
this problem, the cloud providers could allow tenants to profile
the statistics under different situations, or allow tenants to
request re-profiling in a reasonable frequency when the tenants
change their applications.

VIII. CONCLUSION

In this paper, we have conducted a measurement study on
the impact of memory DoS attacks on a variety of cloud-based
applications. We observe that i) all the applications suffer a
significant decrease in AccessNum during the bus locking
attack and a significant increase in MissNum during the
LLC cleansing attack, and ii) the periodic applications show
prolonged periodicity for both kind of attacks. Based on the
two observations, we propose two lightweight and responsive
detection schemes SDS/B and SDS/P that can accurately
detect the attacks. In this extended version, we exploit the
LSTM-FCN to design a DNN-based detection scheme that is
general to all applications and is more responsive and robust
to the adaptive attack scenario. Our experiments conducted
on a real server demonstrate that SDS (an implementation
that includes both SDS/B and SDS/P) and DNN can detect
the attacks with up to 100% recall, 90-100% specificity and
15-30 seconds detection delay for a variety of applications
and incurs only 1-2% performance overhead on the execution
times of cloud-based applications.

In the future, we plan to extend this work by i) exploring
whether we can co-relate the resource utilizations (e.g., CPU

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: STUDY ON IMPACT OF MEMORY DoS ATTACKS ON CLOUD APPLICATIONS AND EXPLORING REAL-TIME DETECTION SCHEMES 1657

and memory) with the cache-related statistics to design a new
detection scheme for dynamic applications; and ii) studying
the memory DoS attacks in the container-based services and
systems such as AWS Lambda and Kubernetes.

ACKNOWLEDGMENT

The authors would like to thank Dr. Yinqian Zhang and
Dr. Tianwei Zhang for providing the source code of two
memory DoS attacks and their insightful suggestions.

REFERENCES

[1] AMD Architecture Programmer’s Manual, Volume 1: Application Pro-
gramming. Accessed: Sep. 2021. [Online]. Available: http://support.
amd.com/TechDocs/24592.pdf

[2] Apache Hadoop. Accessed: Sep. 2021. [Online]. Available:
http://hadoop.apache.org/

[3] Apache Hive. Accessed: Sep. 2021. [Online]. Available:
https://hive.apache.org/

[4] AWS Said it Mitigated a 2.3 TBPS DDOS Attack, the Largest
Ever. Accessed: Sep. 2021. [Online]. Available: https://www.zdnet.
com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-
ever/

[5] HiBench Benchmark Suite. Accessed: Sep. 2021. [Online]. Available:
https://github.com/intel-hadoop/HiBench

[6] Intel R 64 and ia-32 Architectures Software Developer’s Manual, Vol-
ume 3B: System Programming Guide. Accessed: Sep. 2021. [Online].
Available: https://software.intel.com/en-us/articles/intel-sdm

[7] Ms-Celeb-1M: Challenge of Recognizing One Million Celebrities
in the Real World. Accessed: Sep. 2021. [Online]. Available:
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-
challenge-recognizing-one-million-celebrities-real-world/

[8] Online Experiments: Lessons Learned. Accessed: Sep. 2021.
[Online]. Available: http://exp-platform.com/Documents/IEEECompute
r2007OnlineExperiments.pdf

[9] Processor Counter Monitor (PCM). Accessed: Sep. 2021. [Online].
Available: https://github.com/opcm/pcm

[10] Xbox Live and Playstation Attack: Christmas Ruined for
Millions of Gamers. Accessed: Sep. 2021. [Online]. Available:
https://www.theguardian.com/technology/2014/dec/26/xbox-live-and-
psn-attack-christmas-ruined-for-millions-of-gamers

[11] J. Ahn, C. Kim, J. Han, Y.-R. Choi, and J. Huh, “Dynamic virtual
machine scheduling in clouds for architectural shared resources,” in
Proc. HotCloud, 2012, pp. 1–5.

[12] Amazon Web Service. Accessed: Sep. 2021. [Online]. Available:
http://aws.amazon.com/

[13] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on virtualized
enterprise servers,” in Proc. WOSP/SIPEW, 2010, pp. 235–242.

[14] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. Marvel, “Malicious co-residency on the cloud: Attacks and
defense,” in Proc. INFOCOM, 2017, pp. 1–9.

[15] R. N. Bracewell and R. N. Bracewell, The Fourier Transform and its
Applications, vol. 31999. New York, NY, USA: McGraw-Hill, 1986.

[16] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A hardware evaluation of cache partitioning to improve utilization
and energy-efficiency while preserving responsiveness,” in Proc. ACM
SIGARCH Comput. Archit. News, vol. 41, 2013, pp. 308–319.

[17] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4,
pp. 77–88, 2013.

[18] C. Gardiner, Stochastic Methods, vol. 4. Berlin, Germany: Springer,
2009.

[19] Google Cloud Platform. Accessed: Sep. 2021. [Online]. Available:
https://cloud.google.com/compute/

[20] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83,
Jan. 1978.

[21] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.

[22] Improving Real-Time Performance by Utilizing Cache Allocation Tech-
nology, Intel, Mountain View, CA, USA, 2015.

[23] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662–1669, 2017.

[24] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Proc.
IEEE Netw. Oper. Manage. Symp., Apr. 2012, pp. 1287–1294.

[25] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud,”
in Proc. USENIX Secur. Symp., 2012, pp. 189–204.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[27] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2007,
pp. 200–209.

[28] I. Lawrence and K. Lin, “A concordance correlation coefficient to
evaluate reproducibility,” Biometrics, vol. 4, pp. 255–268, Mar. 1989.

[29] Z. Li, T. Sen, H. Shen, and M. C. Chuah, “Impact of memory DoS
attacks on cloud applications and real-time detection schemes,” in Proc.
49th Int. Conf. Parallel Process., Aug. 2020, pp. 1–11.

[30] Z. Li, H. Shen, and C. Miles, “PageRankVM: A pagerank based
algorithm with anti-collocation constraints for virtual machine placement
in cloud datacenters,” in Proc. ICDCS, 2018, pp. 634–644.

[31] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE S&P, Oct. 2015,
pp. 605–622.

[32] A. Mahgoub et al., “Optimuscloud: Heterogeneous configuration opti-
mization for distributed databases in the cloud,” in Proc. USENIX Annu.
Tech. Conf. (ATC), 2020, pp. 189–203.

[33] L. Mandel and E. Wolf, “Spectral coherence and the concept of cross-
spectral purity,” JOSA, vol. 66, no. 6, pp. 529–535, 1976.

[34] F. J. Massey, Jr., “The Kolmogorov-Smirnov test for goodness of fit,”
J. Amer. Stat. Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[35] A. Pavlo et al., “A comparison of approaches to large-scale data
analysis,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009,
pp. 165–178.

[36] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proc. CCS, 2009, pp. 199–212.

[37] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., May 2015, pp. 815–823.

[38] A. Singh, M. R. Korupolu, and D. Mohapatra, “Server-storage virtual-
ization: Integration and load balancing in data centers,” in Proc. SC,
2008, pp. 1–12.

[39] N. Strodthoff and C. Strodthoff, “Detecting and interpreting myocar-
dial infarction using fully convolutional neural networks,” 2018,
arXiv:1806.07385.

[40] M. Tarighi, S. A. Motamedi, and S. Sharifian, “A new model for virtual
machine migration in virtualized cluster server based on fuzzy decision
making,” CoRR, vol. 2020, pp. 1–12, Feb. 2020.

[41] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift, “A placement
vulnerability study in multi-tenant public clouds,” in Proc. USENIX
Secur. Symp., 2015, pp. 913–928.

[42] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and
structural periodic similarity,” in Proc. SIAM Int. Conf. Data Mining,
Apr. 2005, pp. 449–460.

[43] L. Welch, “Lower bounds on the maximum cross correlation of signals
(corresp.),” IEEE Trans. Inf. Theory, vol. IT-20, no. 3, pp. 397–399,
May 1974.

[44] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc. NSDI,
2007, pp. 1–17.

[45] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Comput. Netw., vol. 53, no. 17, pp. 2923–2938, Dec. 2009.

[46] J. Wu and S. Wei, Time Series Analysis. ChangSha, China: Hunan
Science and Technology Press, 1989.

[47] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of l2 cache covert channels in virtualized environments,”
in Proc. 3rd ACM workshop Cloud Comput. Secur. Workshop, 2011,
pp. 29–40.

[48] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud,” in Proc. USENIX Secur. Symp., 2015,
pp. 929–944.

[49] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online QoS management for increased utilization in warehouse scale
computers,” in Proc. ACM SIGARCH Comput. Archit. News, vol. 41,
2013, pp. 607–618.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

1658 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

[50] T. Zhang and R. B. Lee, “Host-based DoS attacks and defense in the
cloud,” in Proc. Hardw. Archit. Support Secur. Privacy, 2017, pp. 1–8.

[51] T. Zhang, Y. Zhang, and R. B. Lee, “DoS attacks on your memory in
cloud,” in Proc. AsiaCCS, 2017, pp. 253–265.

[52] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Proc. CCS, 201,
pp. 305–3162.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-
channel attacks in PAAS clouds,” in Proc. CCS, 2014, pp. 990–1003.

[54] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
QoS prediction on real-system SMT processors to improve utilization
in warehouse scale computers,” in Proc. 47th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2014, pp. 406–418.

[55] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” ACM SIG-
PLAN Notices, vol. 45, no. 2, pp. 129–142, 2010.

Zhuozhao Li received the Ph.D. degree in com-
puter science from the University of Virginia.
He was a Post-Doctoral Scholar at The University
of Chicago. He is currently an Assistant Professor
with the Department of Computer Science and Engi-
neering and the Research Institute of Trustworthy
Autonomous Systems, Southern University of Sci-
ence and Technology. His research interests include
distributed systems, cloud computing, and high-
performance computing, with an emphasis on devel-
oping working prototypes for real-world problems

and designing the foundation methodologies to optimize system performance
for efficient computing.

Tanmoy Sen (Graduate Student Member, IEEE)
received the B.Sc. degree from the Bangladesh Uni-
versity of Engineering and Technology in 2014.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science, University of
Virginia. His research interests include edge/cloud
computing, the IoT, and machine learning.

Haiying Shen (Senior Member, IEEE) received the
B.S. degree in computer science and engineering
from Tongji University, China, in 2000, and the M.S.
and Ph.D. degrees in computer engineering from
Wayne State University in 2004 and 2006, respec-
tively. She is currently an Associate Professor with
the Department of Computer Science, University of
Virginia. Her research interests include distributed
computer systems and networks, cloud computing,
edge computing, distributed machine learning, and
cyber-physical systems. She is a Microsoft Faculty
Fellow of 2010 and a member of the ACM.

Mooi Choo Chuah (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the Uni-
versity of California San Deigo. She is currently a
Professor with the Department of Computer Science
and Engineering, Lehigh University. Prior to joining
Lehigh University, she was a Distinguished Member
of technical staff and a Technical Manager at Lucent
Bell Laboratories, Murray Hill, NJ, USA. Based on
her research work at Bell Laboratories, she has been
awarded 63 U.S. patents and 15 international patents
related to mobility management, 3G, and next gen-

eration wireless system design. Her research interests include designing next
generation networks, mobile computing, mobile healthcare, network security,
and secure cyber-physical systems. She is a NAI Fellow. She has served
as a Technical Co-Chair for IEEE INFOCOM in 2010 and a Symposium
Co-Chair for the IEEE Globecom Next Generation Networking Symposium
in 2013. She has been an Associate Editor of the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON

MOBILE COMPUTING, and Computer Networks.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:33:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

