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Abstract— To support higher demand for datacenter networks,
networking researchers have proposed hybrid electrical/optical
datacenter networks (Hybrid-DCN) that leverages optical circuit
switching (OCS) along with traditional electrical packet switching
(EPS). However, due to the high reconfiguration delay of OCS,
OCS is used only for bulk data transfers between racks to
amortize the reconfiguration delay. Existing job schedulers for
data-parallel frameworks are not designed for Hybrid-DCN,
since they neither place tasks to aggregate data traffic to take
advantage of OCS, nor schedule tasks to minimize the Coflow
completion time (CCT). In this paper, we describe the mismatch
between existing job schedulers and the advanced Hybrid-DCN,
introduce the requirements for the new scheduler, and present the
implementation of Co-scheduler, a job scheduler for data-parallel
frameworks that aims to improve job performance by placing the
tasks of jobs to aggregate enough data traffic to better leverage
OCS to minimize the CCT in Hybrid-DCN. Specifically, for every
job, Co-scheduler computes guidelines on how many racks to
place the job’s input data and the job’s tasks. The guidelines are
dynamically generated based on the real-time job characteristics
or predictable job characteristics from prior runs, with the aim of
leveraging OCS whenever possible and efficient and minimizing
CCT of jobs. Co-scheduler then schedules the tasks of jobs based
on the guidelines. We evaluate the effectiveness of Co-scheduler
using trace-driven simulation. The evaluation demonstrates that
Co-scheduler can improve makespan, average job completion
time, and average CCT of a workload by up to 56%, 61%, and
79%, respectively, compared to the state-of-the-art schedulers.

Index Terms— Optical circuit switching, Hybrid-DCN, job
scheduler, traffic aggregation.

I. INTRODUCTION

IN THE past decade, many organizations (e.g., Facebook
and Yahoo!) have deployed data-parallel frameworks such

as MapReduce [1] and Spark [2] to process the increas-
ingly large volume of data. Their applications often involve

Manuscript received 12 June 2021; revised 26 November 2021 and 4 January
2022; accepted 9 January 2022; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor C. Wu. Date of publication 28 January 2022;
date of current version 18 August 2022. This work was supported in part
by the U.S. National Science Foundation (NSF) under Grant NSF-1827674,
Grant CCF-1822965, Grant OAC-1724845, Grant ACI-1719397, and Grant
CNS-1733596; and in part by the Microsoft Research Faculty Fellowship
under Grant 8300751. The preliminary work was published in [62] [DOI:
10.1109/ICDCS.2019.00027]. (Corresponding author: Zhuozhao Li.)

Zhuozhao Li is with the Department of Computer Science and Engineering
and the Research Institute of Trustworthy Autonomous Systems, Southern
University of Science and Technology, Shenzhen 518055, China (e-mail:
lizz@sustech.edu.cn).

Haiying Shen is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22903 USA (e-mail: hs6ms@virginia.edu).

Digital Object Identifier 10.1109/TNET.2022.3143232

network-intensive stages (e.g., shuffle in MapReduce) that
transfer a large amount of data. For example, 60% and 20%
of the jobs on the Yahoo! [3] and Facebook MapReduce
clusters [4] are shuffle-heavy jobs (i.e., jobs with a large shuffle
data size). However, the network from Top-of-Rack (ToR)
switch to the core switch in current datacenter commonly have
link oversubscription ranging from 3:1 to 20:1 [1], [4]–[7].
In addition, it has been showed that the background data
transfer (e.g., data replications) can use up to 50% of the
cross-rack bandwidth [8], which further decreases the avail-
able bandwidth for the data-parallel frameworks. As a result,
these frameworks often suffer performance degradation due to
cross-rack network bottlenecks.

To provide sufficient network bandwidth, several studies
proposed a hybrid electrical/optical datacenter network (in
short Hybrid-DCN) [9]–[12] architecture, which augments
the traditional electrical packet switching (EPS) datacenter
network with an optical network using optical circuit switch
(OCS), as shown in Figure 1. The ToR switches are connected
with a core EPS and an OCS. Compared with EPS, OCS has
significant lower capital expenditures (CapEx) and operating
expenditures (OpEx) [9]–[12]. However, OCS has a port con-
straint: one input port can setup only one circuit to an output
port at a time. To change the input-to-output connection for
data transfers, one needs to reconfigure the circuit connection
in OCS, which results in a reconfiguration delay on the
order of μs-to-ms [9], [10]. This reconfiguration overhead
is not acceptable for small flows with a small data size,
which generally completes in several microseconds within
the datacenter networks. This constraint implicates that OCS
should be used only for elephant flows (e.g., flows with at least
1.125 GB [9], [10], [13], called elephant flow threshold later
on) between racks in Hybrid-DCN, so that the reconfiguration
delay becomes negligible [9], [10], [14], compared to the data
transfer time.

However, we need to develop new job schedulers for
data-parallel frameworks to keep pace of the needs for
Hybrid-DCN due to the two reasons below.

Current state-of-the-art job schedulers fail to aggregate
sufficient data traffic to take advantage of OCS (take
advantage of OCS in short later in the paper) to accelerate
data transfers. Existing schedulers can be classified into two
groups. A group of schedulers (e.g., Fair [15] and Delay [4])
reduces the data transfers by increasing the data locality
during map stages. However, since the input data of a job is
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Fig. 1. A typical Hybrid-DCN architecture. The link rate between ToR and
core EPS is BWEPS , while the link rate between ToR and OCS is BWOCS .

randomly placed across all the racks, these schedulers schedule
the tasks randomly (in most case evenly as well for load
balancing) across all the racks, which does not attempt to
aggregate the data transfers and generates many small flows
that cannot be sent via OCS. Another group of schedulers
(e.g., ShuffleWatcher [6], Corral [16], and NAS [17]), so called
network-aware schedulers, schedule the tasks of a job to avoid
using the network to reduce the cross-rack network traffic
and cross-rack congestion, rather than taking advantage of the
high-bandwidth OCS. Thus, we need to develop a new job
scheduler to aggregate the data transfers of jobs to reach the
elephant flow threshold (e.g., 1.125 GB).

Modern data-parallel applications often have communica-
tion stages between computation stages, and each commu-
nication stage is deemed completed only when all of its
communication flows have completed. Recent studies [18],
[19] proposed Coflow to abstract such a collection of parallel
flows. For example, the shuffle between map and reduce stages
is a Coflow. The completion time of a Coflow (CCT) is defined
as the time duration between the beginning of its first flow and
the completion of its last flow. Existing Coflow schedulers for
OCS [20] minimize the CCTs of jobs by optimally prioritizing
the Coflows, assuming the source and destination of each flow
in a Coflow is known priori. However, different job schedulers
may place the map and reduce tasks very differently, and hence
the source-destination pair of a flow may vary significantly and
so does the CCT of a job. This implies that the scheduling
of a job may affect its CCT. Unfortunately, existing job
schedulers do not schedule tasks in a way that facilitates
the Coflow schedulers to easily minimize CCTs.

In this paper, we propose Co-scheduler, a job scheduler that
aims to improve job performance by enabling the data transfers
of jobs to take advantage of OCS, while placing the tasks to
minimize CCTs of the jobs.

Co-scheduler consists of four main steps for every job.
•Co-scheduler computes a guideline on the number of racks
to place the job’s input data, so that the job can poten-
tially take advantage of OCS to transfer its data. Many
jobs in modern workloads are recurring while others are
not. Co-scheduler leverages this feature and uses differ-
ent models to generate different guidelines with respect to
the input data placement of recurring and non-recurring
jobs.
•Based on the input data placement guideline, Co-scheduler
further generates the map task placement guideline to maintain
high data locality, while still enabling the job to potentially
take advantage of OCS. When the map tasks of the job

complete, Co-scheduler finds out all the possible schedules of
the reduce tasks of the job based on its map output distribution.
Each possible schedule includes the number of racks to run
the job’s reduce tasks, and the number of reduce tasks to place
on each of the racks that minimizes CCT of the job.
•After finding out all the possible schedules for the job,
Co-scheduler selects the best schedule among them that
enables the reduce tasks of the job to finish the data fetching
and to start the computation stage the earliest.
•Finally, Co-scheduler schedules the job based on generated
data placement and task placement guidelines, which maxi-
mize the probability of the job to take advantage of OCS in
Hybrid-DCN and minimizes CCT of the job.

We have evaluated Co-scheduler via a trace-driven
simulation. The experimental results demonstrate that
Co-scheduler outperforms the state-of-the-art schedulers by
up to 56% makespan, 61% average job completion time, and
79% average CCT.

The rest of the paper is organized as follows. Section II
introduces the background of Hadoop and Hybrid-DCN.
Section III presents two motivation examples. Section IV
introduces the main design of Co-scheduler. Section V presents
the performance evaluation. Section VI discusses how to
extend Co-scheduler to other general scenarios. Section VII
discusses the related work. Section VIII concludes this paper
with remarks on our future work.

II. BACKGROUND

A. Hadoop MapReduce

A MapReduce job generally consists of map and reduce
stages. The input data of a MapReduce job is split into small
data blocks. The map stage consists of a number of map tasks,
each of which applies a “map” function on an input data block
to generate intermediate data (called shuffle data). The reduce
stage consists of two phases, shuffle and reduce phases. In the
shuffle phase, all shuffle data belonging to one key is grouped
together and transferred to the corresponding worker node. The
reduce phase also consists of a number of reduce tasks, each
of which applies the “reduce” function to process a group of
the shuffle data.

Hadoop YARN [21] is a widely-used and open-source
distributed data processing framework that enables running
MapReduce jobs. The basic processing unit in YARN is
called a resource container. Each (map or reduce) task
is processed by a container, each of which has a certain
amount of CPU and memory resources [16]. YARN has a
job scheduler that is responsible for scheduling the tasks of
jobs to available resource containers on different nodes, i.e.,
the task placements of every job and the orders of tasks
among jobs.

When a certain fraction of map tasks (e.g., by default
5% [22]) for a job have completed, YARN can start to
schedule the reduce tasks in the reduce stage. After a reduce
task is scheduled, the shuffle phase of this reduce task start
immediately. However, the reduce task cannot start until all
the map tasks of the job complete, i.e., until the shuffle data
needed by the reduce task has completed to transfer.
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B. Hybrid-DCN

In this paper, we assume a cluster has R racks and assume
that Hybrid-DCN is the same as c-Through [9], as shown in
Figure 1. As in [10] and [9], we assume that only the flow with
size larger than the elephant flow threshold Te (empirically
set by network researchers [9], [10], e.g., 1.125 GB) is sent
via OCS; otherwise, it communicates through EPS. We define
shuffle-heavy jobs as the jobs with shuffle data size no smaller
than the elephant flow threshold.

We abstract OCS as a non-blocking R-port switch (R input
ports and R output ports). Each port is connected to a
ToR switch and each ToR switch is connected to a rack of
machines. Since each input port of OCS can configure one
circuit to only one output port at a time, one rack can send
data via OCS to only one another rack at a time. To change the
rack to rack connection, OCS needs to reconfigure the circuit
with a fixed time δ called reconfiguration delay.

We assume that circuit switching model of OCS is not-all-
stop model, as in [20]. In other words, during the reconfigu-
ration period δ, the communication stops only on the affected
racks, including the racks to be setup circuits, as well as the
racks to be torn down circuits.

C. Lower Bound of Coflow Completion Time With OCS

Assume there are R racks in the cluster. We present a
Coflow C as a traffic matrix C = (Cij), where Cij is
the size of the flow that needs to be transmitted from rack
i to rack j, i, j = 1, 2, . . . , R. Note that Cij is required
to be larger than elephant flow threshold Te to use OCS.
In OCS, to send data from one rack to another rack, it requires
reconfiguration to setup the circuit. Thus, each flow incurs at
least one reconfiguration delay δ and the minimum time to
transfer a flow with size Cij is

tij =

⎧⎨
⎩

Cij

BWOCS
+ δ, if Cij > 0

0, if Cij = 0
, (1)

where BWOCS is the link bandwidth of OCS. We can derive
that the CCT lower bound in OCS is

T (C) = max

⎛
⎝max

i

∑
j

tij , max
j

∑
i

tij

⎞
⎠ . (2)

∑
j tij is the minimum time used to complete the flows

sent out from rack i, while
∑

i tij is the minimum time
used to complete the flows received by rack j. Thus, T (C)
serves as a lower bound CCT for Coflow C. Note that this
theoretical lower bound CCT is commonly used in several
previous work [20], [23]. In fact, previous work [23] showed
that Coflow C can be completed in exactly T (C) time by
using the optimal clearance algorithm in [24].

It is worth mentioning that the lower bound T (C) of a
Coflow is actually determined by the maximum data size
sent or received of a rack in the Coflow, according to
Equation (15).

III. MOTIVATIONS AND CHALLENGES

A. Traffic Aggregation to Take Advantage of OCS

To take full advantage of OCS in Hybrid-DCN, we need to
schedule the tasks so that the network traffic between map and
reduce stages is aggregated enough to reach the elephant flow
threshold. For example, let us consider a typical shuffle-heavy
MapReduce job, TeraSort. Assume we need to sort 10 GB of
data. In a MapReduce TeraSort job, the shuffle data size is the
same as the input data size, i.e., 10 GB. A typical input data
block is 256 MB, which results in 10 GB / 256 MB = 40 map
tasks. Suppose the number of reduce tasks is 10 (a typical
setting with this input data size). This means there are in total
40 ∗ 10 = 400 flows (all-map-to-all-reduce communication),
with each flow of size 25 MB (on average). If we do not
attempt to aggregate the flows, this flow size is much smaller
than the elephant flow threshold. This example illustrates that
even many shuffle-heavy jobs have a huge shuffle data size
(e.g., 10 GB), it still may not be able to take advantage
of OCS.

However, if we proactively place the map tasks in 2 racks
and the reduce tasks in 2 racks and batch the flows to 4
“elephant” flows across the 4 racks (batching can be enabled
in Hybrid-DCN as introduced in c-Through [9]), then each of
these 4 elephant flows would be 2.5 GB and it is sufficient to
enable the flows to use OCS. Thus, we have the first goal of
designing the job scheduler for Hybrid-DCN:

Goal-1: The job scheduler needs to schedule the map and
reduce tasks of a job on as few racks as possible to aggregate
the data transfer to take advantage of OCS.

B. Maximizing the Number of Circuits for Coflow

The scheduling of the tasks of a job impacts its CCT, since
it affects the number of circuits that can be used to transfer the
Coflow of the job. Intuitively, if a job uses more circuits, given
the same size of shuffle data to transfer, it takes shorter time
to complete the Coflow transfer of the job. Let us consider the
following example.

For example, assume there are two shuffle-heavy jobs
Job1 and Job2. Job1 has 9 map tasks and 3 reduce tasks,
and Job2 has 15 map tasks and 3 reduce tasks. Each map
task needs to transfer 1 unit data size to each reduce task
(i.e., in total 27 and 45 flows with data size of 1 in Job1 and
Job2, respectively). In each unit time, OCS can transfer 1 unit
of data. The OCS reconfiguration delay is δ. The cluster has
three racks and each rack can communicate with one another
rack at a time.

To schedule the Coflows, Sunflow [20] is used here. Specif-
ically, Sunflow uses shortest Coflow first algorithm (i.e.,
shortest lower bound CCT as introduced in Section II-C) and
allows the Coflow with a higher priority to use the circuits non-
preemptively. Thus, the Coflow of Job1 has a higher priority
in this example.

Case1 (Figure 2(a)): The map and reduce tasks of Job1 and
Job2 are scheduled as shown in the two tables in Figure 2(a).
According to the Gantt chart on the right, the CCTs of
Job1 and Job2 are 12 + 2δ and 20 + 3δ, respectively.
We describe below how to interpret the Gantt chart in these
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Fig. 2. Motivation example. The box with a number j indicates that a circuit to rack j is configured on the rack.

figures. For example, the second row of the Gantt chart can
be interpreted as follows: (1) this row represents the durations
of flows sent out from Rack2; (2) the OCS circuit is first
configured from Rack2 to Rack3. Job2 needs to transfer
3 units of data from Rack2 to Rack3 (3 map on Rack2 to
1 reduce on Rack3). The remaining circuit time is used by
Job2 to transfer 3 units of data from Rack2 to Rack3 (out
of 5 units in total, 5 map on Rack2 to 1 reduce on Rack3);
(2) the OCS circuit is then reconfigured from Rack2 to Rack1
to transfer 10 units of data by Job2 (5 map on Rack2 to
2 reduce on Rack1); (3) the OCS circuit is then reconfigured
from Rack2 to Rack3 again to transfer the remaining 2 units
of data leftover in step (2) above.

Case2 (Figure 2(b)): The map and reduce tasks of Job1 and
Job2 are scheduled as shown in the two tables in Figure 2(b).
According to the Gantt chart on the right, the CCTs of
Job1 and Job2 are 6 + 2δ and 16 + 3δ, respectively.

We see that the CCTs of the two jobs in Case2 are shorter
than those in Case1, which demonstrates that the scheduling
of the tasks of a job impacts its CCT. To shorten the CCT of
a job, the ideal way is to distribute the data transfer of the
job to more racks so that more circuits can be used to transfer
data concurrently. Thus, we have:

Goal-2: The job scheduler needs to distribute the data
transfer of a job to as many racks as possible, so that more
circuits can be used to transfer data concurrently to shorten
the CCT of the job.

C. Summary and Issues

Takeaway: We need to design a job scheduler to (i) place
the map and reduce tasks of each job on a few racks to
aggregate the data transfer to take advantage of OCS; and (ii)
allow each job to transfer its data using as many circuits as
possible to minimize the CCT.

Issues: There are several issues we need to resolve in
designing such a job scheduler.

• Issue1: How many racks should the map tasks and reduce
tasks of a job be placed?

• Issue2: How many tasks should we place on each rack
to minimize the CCT of a job?

• Issue3: How to select the set of racks to place the tasks
of a job?

In the next section, we present the Co-scheduler design to
solve the issues.

IV. CO-SCHEDULER DESIGN

In this section, we propose Co-scheduler, a job scheduler
that schedules the tasks of jobs on Hybrid-DCN and enables
the jobs to take advantage of OCS in Hybrid-DCN while
minimizing CCTs. We note that Co-scheduler is only for the
“scheduling” of jobs but not Coflows. It determines the task
and data placement of jobs (Sections IV-D, IV-E, and IV-F)
and the order to execute the tasks among jobs (Section IV-G).
Coflow scheduling is orthogonal to our work, and can be
combined with Co-scheduler to further improve the job
performance.

A. Rethinking the Overlapping of Map and Reduce Tasks

In YARN, a reduce task is associated with its corresponding
shuffle and the shuffle starts fetching data once the corre-
sponding reduce task is scheduled, while fractions of the
map tasks of the job may be still running. The goal of this
mechanism is to overlap the shuffle data transfers with the map
progress to shorten the execution time of the job. However, this
mechanism may cause two problems.

• In a highly busy cluster, it results in low resource uti-
lization since the reduce tasks take up the containers to
just wait for data transfers when these resources could
otherwise process other jobs.

• It does not facilitate shuffle traffic aggregation, since it
starts each shuffle data flow individually and immediately
after its reduce, instead of waiting for data aggregation
to take advantage of OCS.

Due to these problems, we raise a question: With high-
bandwidth OCS, is this overlapping mechanism still benefi-
cial? We argue that abandoning the overlapping mechanism
would be more beneficial for workloads with a large portion
of shuffle-heavy jobs, since it could enable the data transfers
of jobs to take advantage of OCS in Hybrid-DCN.

We propose to start scheduling the reduce tasks of a job
after all its map tasks are completed. In addition, unlike YARN
that starts the corresponding shuffle data transfer immediately
after each corresponding reduce task is scheduled, we further

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:34:38 UTC from IEEE Xplore.  Restrictions apply. 



LI AND SHEN: CO-SCHEDULER: COFLOW-AWARE DATA-PARALLEL JOB SCHEDULER 1603

Fig. 3. Co-scheduler system architecture.

propose to start the shuffle data transfer of the job after all
the reduce tasks are assigned to containers. This late start
mechanism has several benefits:
• It relieves the symptoms that reduce tasks take up containers
that could be used to process the tasks of other jobs.
• It facilitates the aggregation of data transfer within a job to
exploit OCS. Reduce tasks on the same rack can fetch shuffle
data from map tasks simultaneously using OCS.
•Since reduce tasks are scheduled after all the map tasks of
the job complete, the job scheduler can exploit the information
of map output distribution to better schedule the reduce tasks
to take advantage of OCS.

B. Opportunity

Several previous studies [16], [25]–[27] show that cluster
workloads contain a large portion of recurring jobs (e.g.,
40%), whose job characteristics (e.g., input/shuffle/output data
sizes, job arrival time, the number of map/reduce tasks, and the
map/reduce task execution time) can be predicted with a small
error (e.g., 6.5% [16]). This provides an opportunity to better
determine the number of racks to place the input datasets and
to run the tasks for the recurring jobs before the input datasets
and the jobs are submitted to the cluster.

C. Overall Architecture

Co-scheduler has different strategies for recurring and non-
recurring jobs. Figure 3 shows the overall architecture. The
ultimate goal of Co-scheduler is to aggregate the data transfers
of jobs to a few racks to take advantage of OCS. To achieve
so, Co-scheduler consists of four main components and we
describe how each component works below.
Data Placement Guideline Generator (Section IV-D). To
aggregate the data transfers of a job, we need to place its map
and reduce tasks on a few racks, as aforementioned. Due to
the data locality (a map task and its input data block are on the
same rack) preference, the input data placement should also be
constrained in a few racks; otherwise, we either lose data local-
ity or fail to aggregate the map tasks, which may hurt the job
performance. Thus, when the input data of a job is submitted to
the cluster, Co-scheduler generates a data placement guideline
on how many racks to place its input data, so that the job

can take advantage of OCS while achieving high data locality.
For non-recurring jobs, Co-scheduler dynamically infers from
the job characteristics to maximize the possibility of taking
advantage of OCS. For recurring jobs, Co-scheduler leverages
an improved latency response model to derive the number of
racks that can maximize the benefits of OCS.
Task Placement Guideline Generator (Section IV-E). Task
Placement Guideline Generator is to generate the possible
schedules for both map and reduce tasks of a job, so that
the job can take advantage of OCS to transfer its shuffle data.
For map tasks, the guideline is to select Rmap racks randomly
among those racks that have the job’s input data, where Rmap

is the number of racks to run its map tasks on. For reduce
tasks, the guideline is a set of {[Rred,D, CCT ]}, where Rred

is the number of racks to run its reduce tasks on, D indicates
the number of reduce tasks to place on each of the Rred racks,
and CCT is the CCT with such placement of reduce tasks.
Best Reduce Task Schedule Selector (Section IV-F). For
each job, Co-scheduler uses an ExploreSchedule function to
explore each possible schedule of reduce tasks: for each
possible schedule, it aims to find out how to place tasks that
yields the shortest job completion time. Co-scheduler then
selects the best schedule among them, so that the reduce tasks
of the job can start the earliest and hence the job completion
time is minimized.
OCS and Coflow Aware Scheduler (Section IV-G). Finally,
Co-scheduler schedules each job by following the guidelines
of its map tasks and the best schedule of its reduce tasks.

D. Data Placement Guideline Generator

Suppose Rdata, Rmap and Rred denote the number of racks
to place the input data, the map tasks and the reduce tasks,
respectively. As mentioned above, we need to place its map
and reduce tasks on a few racks to aggregate the data transfers.
Ideally, it is desired to have data locality for a job, which
means that the map tasks and their input data blocks are on
the same set of racks, i.e.,

Rdata = Rmap. (3)

In this section, we present the detail on how to compute
a guideline, i.e., the number of racks Rdata (hence Rmap),
to place the input data for every recurring and non-recurring
job, respectively.

1) Non-Recurring Job: For a non-recurring job, the only
characteristic that is known priori is the input data size, hence
we need to dynamically infer its characteristics. Let us denote
Shuffle data size to Input data size Ratio as SIR. The shuffle
data size of the job equals Input ∗ SIR, where Input is the
input data size. Our current implementation initializes SIR
to be 1.0 as in [6], and dynamically updates the value as the
Map phase of a job progresses. This initial ratio could be
changed accordingly based on the workload characteristics in
the cluster.

To ensure that a job can use OCS to transfer its data,
it requires

Input ∗ SIR

Rmap ∗ Rred
≥ Te, (4)
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which means that the data size sent from any map rack to any
reduce rack must exceed the elephant flow threshold Te.

Based on Section III-B, it is always desired to use more
optical circuits at a time to transfer data concurrently, so that
the CCT of the job is minimized. We can setup at most Rmap

circuits for the Rmap map racks and at most Rred circuits for
the Rred reduce racks, hence the number of circuits that can
be used at a time is at most min (Rmap, Rred). As a result,
maximizing the number of circuits can be interpreted as

maximize min (Rmap, Rred) , (5)

Based on Equation (4), we have

(min (Rmap, Rred))2 ≤ Rmap ∗ Rred ≤ Input ∗ SIR

Te
. (6)

(min (Rmap, Rred))2 = Rmap ∗ Rred occurs only when
Rmap = Rred. Hence, the number of circuits that can be used
must satisfy

min (Rmap, Rred) ≤
√

Input ∗ SIR

Te
. (7)

Equation (7) implies that
√

Input∗SIR
Te

is the theoretical upper
bound for the maximum number of circuits a job can use to
transfer its data. However, the achievable value in real time
may be lower than this upper bound. To maintain the potential
for a job to use the maximum number of circuits, Co-scheduler

initializes Rdata = Rmap = �
√

Input∗SIR
Te

� for a job.
2) Recurring Job: We use an improved version of latency

response function (LRF) [16] to model the latency for every
recurring job j. LRF takes the number of racks allocated to
job j as an input and predicts the latency of job j. We describe
below why the LRF model is suitable for Co-scheduler and
what we have done to improve the LRF model in our paper:
•To simplify the latency predictions in LRF model, the previ-
ous paper [16] assumes that the map, shuffle, and reduce stages
run sequentially. This assumption may not be perfect for the
default Hadoop MapReduce setting. However, in this paper,
we propose a specialized mechanism to decouple the shuffle
from overlapping with the reduce stage to take advantage
of OCS in Section IV-A, which matches perfectly with the
assumption in LRF model.
•The LRF model in the previous paper [16] assumes that the
map and reduce tasks of a job are scheduled on the same set
of racks (i.e., Rmap = Rred), which avoids using the network
by decreasing the cross-rack data transfers between map and
reduce tasks. However, this assumption is no longer suitable
for Co-scheduler. With the high bandwidth of OCS, we would
like to aggregate data transfers to take advantage of OCS,
rather than avoiding using the network. Hence, we improve
LRF to predict the latency as a model of both Rmap and Rred.

Below is the detail of the improved LRF model.

L(Rmap, Rred) = lmap(Rmap) + lshu(Rmap, Rred)
+lred(Rred), (8)

where lmap(Rmap), lshu(Rmap, Rred) and lred(Rred) denote
the latency for the three stages, respectively. lmap(Rmap) and
lred(Rred) can be easily computed from the estimated job

Fig. 4. Latency matrix of an example job under different assignments. The
job consists of 3472 map tasks and 169 reduce tasks. The row and column
represent Rmap and Rred.

characteristics (input/shuffle/output data sizes and the number
of tasks) [16]. lshu(Rmap, Rred) can be computed as

lshu(Rmap, Rred) =
D(Rmap, Rred)

BW
, (9)

D(Rmap, Rred) =
Dshu

Rmap · Rred
∗ (Rred − 1), (10)

where BW is bandwidth, Dshu is shuffle data size of job j,
and D(Rmap, Rred) is cross-rack shuffle data size. Whether
BWEPS or BWOCS should be used for BW depends on
whether OCS or EPS is used in the shuffle stage of job
j. We check if the shuffle data size of job j divided by
Rmap ∗ Rred (i.e., Dshu

Rmap∗Rred
) is greater than the elephant

flow threshold. If yes, OCS is used; otherwise, EPS is used.
Based on Equ. (8), we can compute a latency matrix for every
job j under different combinations of Rmap and Rred.

For instance, Figure 4 shows the latency matrix of an
example shuffle-heavy job under different combinations on a
15-rack cluster, with 600 task slots on each rack. The number
of map tasks for this job is 3472, which is greater than the total
number of containers in 5 racks (5 ∗ 600 = 3000). Therefore,
as Rmap increases from 1 to 5, the latency of the job drops
significantly due to higher parallelism. Since the job has only
169 reduce tasks, there are sufficient slots (i.e., 600 per rack)
to run all the reduce tasks on one rack concurrently (i.e.,
Rred = 1). When Rred increases to 12 racks, the shuffle data
is too spread to exploit OCS and hence we see a significant
latency jump when Rred > 11.

With this improved LRF model, Co-scheduler can find out
all the feasible combinations of Rmap and Rred for job j that
can leverage OCS while achieving high parallelism, as shown
in the green zone of Figure 4. We see that the latencies in this
zone are much smaller than the other entries. For simplicity,
Co-scheduler selects the smallest Rmap in this zone, since
Co-scheduler aims to aggregate the data transfers to take
advantage of OCS and the smallest Rmap leads to the highest
degree of data aggregation.

3) Input Data Placement: In general, each data block has
three replicas. As mentioned above, it is always desired to
have data locality for a map task, which means that the
map task and its input data block are on the same set
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of racks. Having three replicas of every input data block
can not only increase data reliability, but can also increase
the chance to achieve data locality of the corresponding
map task.

In YARN, input data blocks are randomly stored in the
cluster, without a constraint on how many racks to place them.
We have shown in the above two subsections that the input data
placement needs to place the input data on Rdata racks to take
advantage of OCS while achieving sufficient parallelism. Thus,
for the input data of a job, Co-scheduler first randomly chooses
Rdata racks and places the first replica of its input data blocks
evenly onto the Rdata racks. For the second and third replicas,
Co-scheduler randomly selects two other distinct sets of Rdata

racks and place the second and third replicas of the input data
blocks evenly onto the Rdata racks, respectively. The three
sets of Rdata racks are completely disjoint with each other
(hence in total 3 ∗ Rdata distinct racks to place all replicas).
Such an input data placement strategy can help facilitate the
job to take advantage of OCS, while still maintaining three
replicas.

E. Task Placement Guideline Generator

In this section, we describe how Co-scheduler generates the
task placement guideline for every job, i.e., the number of
racks to run the map and reduce tasks, which can aggregate
data transfers sufficiently to take advantage of OCS. When the
map (or reduce) tasks are available to schedule, the generator
is used to compute a guideline for them. Then the OCS and
Coflow aware scheduler (details in Section IV-G) follows the
guideline to schedule those tasks.

1) Map Task Guideline: It is desired to maintain high data
locality for any job to achieve high performance. Thus, the
guideline for map tasks of a job is straightforward: Since
Co-scheduler generates a guideline to place the input data,
as described in Section IV-D, the guideline for map tasks of a
job is to schedule them on any Rmap racks selected from the
3 ∗ Rdata distinct racks that contain the job’s input data.

2) Reduce Task Guideline: Recall in Section IV-A, we pro-
pose to delay scheduling the reduce tasks of a job until the
last map task of the job is completed. One of the benefits is
that the scheduler can know the distribution of data transfer
sizes {SM1, SM2, . . . , SMRmap} on the Rmap racks of the
job, as well as whether the job is shuffle-heavy or not. If any
SMi, i = 1, 2, . . . , Rmap is smaller than Te, we can disregard
it in the computation because i) regardless of the reduce
task placement, the data transfer from this rack cannot use
OCS due to its small size, and ii) the small amount of map
output data only takes a short time to transfer even with EPS.
Therefore, without loss of generality, let us assume that all
SMi, i = 1, 2, . . . , Rmap are greater than the elephant flow
threshold Te, and {SM1, SM2, . . . , SMRmap} are sorted in
ascending order.

Given the data transfer sizes {SM1, SM2, . . . , SMRmap}
on Rmap racks of a job, Co-scheduler needs to solve the
following two problems.

• First, determine all the possible values of Rred that can
take advantage of OCS.

• Second, for each value of Rred, find out how many reduce
tasks to place on each of the Rred racks, denoted as
D = {d1, d2, . . . , dRred

}, where di indicates the number
of reduce tasks to place on a rack, so that the CCT is
minimized.

All possible values of Rred for every non-recurring job.
We describe below how we determine all possible values of
Rred for a non-recurring job. Obviously, the lower bound of
Rred is 1. As to the upper bound, since we expect that the
sizes of as many flows as possible of the job are larger than
the elephant flow threshold Te, we have

Rred ≤ �SM1

Te
�. (11)

Here, we use SM1 because it is the minimum among
{SM1, SM2, . . . , SMRmap} (sorted in ascending order as
aforementioned). Setting Rred to a value smaller than �SM1

Te
�

guarantees all the flows can use OCS. Thus, Rred must be in
the range of [1, �SM1

Te
�].

All possible values of Rred for every recurring job. For
a recurring job, all possible values of Rred can be derived
from Equ. 8 (e.g., green zone in Figure 4). In practice,
the predicted job characteristics may have some estimation
variances, such as the number of tasks and shuffle data size.
At this point, Co-scheduler can adjust the range of possible
Rred to accommodate the estimation variances.
Find the placement D for each possible Rred that min-
imizes CCT. We use the following algorithm to find D for
each Rred value in a range of [1, α]. First, for each of the
Rred racks, we simulate to keep placing the reduce tasks to
each rack, until the data transfers from Rmap racks to Rred

racks are aggregated sufficiently, i.e., the smallest map output
data SM1 can be sent via OCS to each of these Rred racks.
Based on Equations (1) and (15), the CCT lower bound T (C)
is proportional to the maximum data size sent or received
of a rack. Thus, we place the remaining reduce tasks one
by one to the rack that has the smallest data size among
the Rred. By doing this, the maximum data size sent or
received of a rack is minimized. Using this placement can
enable the data transfers of the job to take advantage of OCS,
while minimizing CCT. The CCT can be computed based on
Equations (1) and (15).
Summary for reduce task guideline. For each job, a set of
possible schedules {[Rred,D, CCT ], . . .} is generated for the
reduce tasks. In the next subsection, Co-scheduler selects the
best schedule among them.

F. Best Reduce Task Schedule Selector

We present the details of selecting the best schedule,
as shown in Algorithm 1. Given all the possible schedules of
the reduce tasks of a job in Section IV-E, Co-scheduler uses a
function called ExploreSchedule to select the best schedule
(lines 1-13), so that the reduce tasks can finish the data
transfers and start their computation the earliest, and hence
the job completion time is minimized.

Specifically, the input of ExploreSchedule is a possible
schedule [Rred,D, CCT ], and the output of ExploreSchedule
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Algorithm 1 Pseudocode of Selecting the Best Schedule

1: function EXPLORESCHEDULE([Rred,D, CCT ])
2: Sort D in descending order
3: for di in D do
4: for Rack R in all non-selected racks do
5: TR = the time to schedule di reduce tasks based

on Trem

6: end for
7: ti = the smallest TR

8: ri = the rack with ti, and mark ri as selected rack
9: � Note: selected rack cannot be used again in the

search
10: end for
11: tmax = max{t1, t2, . . . , tRred

}
12: return selected racks R = {r1, r2, . . . , rRred

} and
CCT + tmax

13: end function
14:

15: for P in all possible schedules do
16: RP , tP = ExploreSchedule (P)
17: end for
18: Select best schedule as RB that has the smallest tP .

includes the selection of a set of racks for this possible
schedule and the estimated time when all the reduce tasks
complete their shuffle data transfer. The estimated time in
ExploreSchedule function is based on the estimated remaining
processing time Trem of every running task in the cluster.

Specifically, we exploit a linear model to estimate Trem

of every running task periodically. In Hadoop, the status of
every running task, including the time elapsed telapsed and the
progress P of the task, is reported periodically. We estimate
Trem using a simple heuristic:

Trem = telapsed ∗ 1 − P

P
. (12)

This heuristic assumes that the tasks make progress at a
constant rate. Previous studies [28], [29] show that such a
model works well in practice and the estimation error of Trem

is within 2.9% of the actual completion time.
In the following, we describe the details of ExploreSchedule

function. Without loss of generality, let us assume the sorted
D (descending order) is {d1, d2, . . . , dRred

} (line 2). Assume
that the rack to run di reduce tasks is ri and the estimated
time when sufficient containers on rack ri are available is ti
(namely released time of ri). Thus, we have the selected racks
R = {r1, r2, . . . , rRred

} and their estimated released times
T = {t1, t2, . . . , tRred

} to run {d1, d2, . . . , dRred
} reduce

tasks. The problem is interpreted as selecting the set of racks
R in the cluster with the goal

minimize max{t1, t2, . . . , tRred
}. (13)

Given a possible schedule [Rred,D = {d1, . . . , dRred
}, CCT ],

the ExploreSchedule function first checks which rack in the
cluster is the earliest rack that has available containers to
run d1 reduce tasks and select this rack as r1. Similarly,

Algorithm 2 Pseudocode of OCS and Coflow Aware
Scheduling
1: Sort users based on fairness policy
2: for each container c in all empty containers do
3: Select the first user from the user list and select a task

based on the following order:
4: • The reduce task from a shuffle-heavy job whose

best schedule contains the current rack
5: • The map task from a shuffle-heavy job whose data

is on this rack and whose map tasks has been placed on
fewer than Rmap racks

6: • The reduce task from a non-shuffle-heavy job
7: • Any map task from a non-shuffle-heavy job
8: • Any available reduce task
9: • Any available map task

10: end for

ExploreSchedule selects the racks r2, . . . , rRred
for the sub-

sequent d2, . . . , dRred
reduce tasks using the same method

(lines 3-10). Finally, it outputs the selected racks R =
{r1, r2, . . . , rRred

} and the estimated time of when all reduce
tasks complete their shuffle data transfers, i.e., CCT + tmax,
where tmax = max{t1, t2, . . . , tRred

} (lines 11-12).
Next, we prove that ExploreSchedule can always find the

optimal solution that matches the schedule.
Proof: Without loss of generality, assume that ti =

max{t1, t2, . . . , tRred
}. First, rack ri cannot be replaced by

any racks in {ri+1, . . . , rRred
} or any other racks in the

cluster (i.e., R/{r1, . . . , rRred
}), since their released times of

di containers are certainly larger than ti (otherwise ri will
not be selected ro run di reduce tasks). Second, let us switch
any rack R in {r1, . . . , ri−1} with ri, which means that dj

reduce tasks are scheduled to rack ri while di reduce tasks
are scheduled to rack R. In this case, since dj ≥ di (recall
D = {d1, d2, . . . , dRred

} is in descending order), the released
time of ri to run dj reduce tasks is no smaller than ti, which is
the released time of ri to run di reduce tasks. Hence, no matter
what selection of racks other than R = {r1, r2, . . . , rRred

}, ti
is larger. �

After Co-scheduler applies ExploreSchedule to all the pos-
sible schedules of a job, it selects the best schedule that leads
to the smallest CCT + tmax (lines 15-18).

G. OCS and Coflow Aware Scheduler

We present the details of OCS and Coflow aware scheduling,
which is invoked when there are available containers in the
cluster. Specifically, when a container on a rack is available,
Co-scheduler selects the first user based on the fairness policy
in [4] and schedules a task from the user to the container
following Algorithm 2. Though we assume Co-scheduler fol-
lows fairness here, other policies in [30] and [31] can also be
applied.

When a specific container is available, Co-scheduler sched-
ules the tasks in the order above considering the factors below:

• Higher priorities are given to the tasks from a
shuffle-heavy job that follows the guideline of the map

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 09,2023 at 04:34:38 UTC from IEEE Xplore.  Restrictions apply. 



LI AND SHEN: CO-SCHEDULER: COFLOW-AWARE DATA-PARALLEL JOB SCHEDULER 1607

tasks or the best schedule of the reduce tasks (lines 4-5),
which enables the shuffle-heavy job to take advantage of
OCS and to minimize CCT of the jobs.

• If a map or reduce task from shuffle-heavy jobs that
follows the guideline or best schedule cannot be found,
higher priorities are given to the tasks from non-shuffle-
heavy jobs (lines 6-9). This is because scheduling tasks
of shuffle-heavy jobs will violate the guideline and the
best schedule of the shuffle-heavy jobs, which prevents
them from using OCS.

H. Computation Complexity

In this section, we discuss the computation complexity of
each component in Co-scheduler. For each job, generating the
guidelines for input data placement and map task placement
(Sections IV-D and IV-E) takes O(R2) time at worse, where R
is the number of racks in a cluster. The reduce task placement
generator needs to select the number of racks to place the
reduce tasks, i.e., Rred. We propose a heuristic Algorithm 1
to speed up this process (Sections IV-E and IV-F), which takes
O(R ∗ R2

red) at worse for each job. In practice, the number
of racks in a cluster is generally small (<100) and Rred is
even smaller (as Co-scheduler would like to aggregate the
reduce tasks), so the computation complexities of all the above
components are acceptable.

V. PERFORMANCE EVALUATION

In this section, we evaluate Co-scheduler using simulation
with workload traces drawn from production traces.

A. Experimental Setting

Workloads. The workload traces we used were from the
SWIM Facebook workloads [3]. Since the workload traces
miss important information such as task running time, we first
replayed all the jobs in the traces (using the tools provided
in the same project [3]) one by one on a single-node Hadoop
YARN cluster and then recorded the necessary information for
every job. We used this recorded log as the workload traces
for simulation.

Simulation. We built a trace-driven flow-level event simu-
lator with different job schedulers. In the simulation, there
were 600 servers, organized into 60 racks with 10 servers
each. Each server can run up to 20 tasks and had 10Gbps
network bandwidth. The Hybrid-DCN topology was the same
as in Figure 1. The link rate between the ToR switch and core
EPS was 10Gbps, which yields a 10:1 oversubscription ratio.
The ToR and OCS were always connected with 100Gbps link.
We ran 1000 jobs selected from the workload. The number of
users was set to 20 and the jobs were randomly assigned to the
users. The elephant flow threshold was set to 1.125 GB, which
is inferred empirically from previous studies [10], [20], [32].
The reconfiguration delay of OCS was set to 10 ms, which is
a typical delay of a 3D-MEMS OCS [10].

Baselines. We compared Co-scheduler with two baselines.
(1) Fair scheduler [15] (Fair in short) is the most widely

used scheduler in current production clusters [15], and it

Fig. 5. Experimental results.

assigns containers to jobs so that each job roughly receives
an equal share of containers over time.

(2) Corral [16] places the map and reduce tasks of the same
job on the same set of racks to reduce the cross-rack shuffle
data transfer.

We used Sunflow [20] as the Coflow scheduling algorithm
for all the schedulers. Specifically, Sunflow uses the shortest
Coflow first algorithm (i.e., shortest lower bound CCT as
introduced in Section II-C) and allows the Coflow with higher
priority to use all the circuits non-preemptively.

Metrics. We used the three metrics below for the evaluation.
(1) Makespan: Makespan is the time to finish all the jobs

in the workload.
(2) Average job completion time (JCT): The JCT of a job

is the time from the arrival of the job until its completion.
Average JCT is the average of all the jobs’ JCTs.

(3) Average CCT : It is the average of all the jobs’ CCTs.
We define the performance comparison between

Co-scheduler and each baseline by

|MetricBaseline − MetricCo−scheduler|
MetricBaseline

, (14)

where MetricBaseline and MetricCo−scheduler are results for
a specific metric of the baseline scheduler and Co-scheduler,
respectively.

B. Experimental Results

We present the experimental results below. The 1000 jobs
arrived uniformly at random in [0, 90] minutes. We assume
50% of the jobs are recurring in the following experiments.
The experiments were repeated 20 times and the average
results were reported. All the results were normalized by the
results of Fair scheduler for ease of comparison.

Figure 5(a) shows the makespan of the workload, average
JCT, and average CCT with different schedulers. Co-scheduler
reduces the makespan of Fair and Corral by 56% and 44%,
respectively. Co-scheduler achieves 61% and 43% reduction
on the average job completion time, compared with Fair
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Fig. 6. Performance improvements of shuffle-heavy and non-shuffle-heavy
jobs.

and Corral, respectively. Compared with Fair and Corral,
Co-scheduler has 79% and 63% reduction on the average CCT,
respectively.

These results demonstrate superior performance of
Co-scheduler in terms of minimizing makespan, average
job completion time, and average CCT, since Co-scheduler
aggregates the shuffle data transfers of shuffle-heavy jobs to
take advantage of OCS and schedules the tasks of jobs to
minimize the CCTs of the jobs. Co-scheduler outperforms
Fair since Fair does not intentionally aggregate the network
traffic to take full advantage of OCS in Hybrid-DCN.
Co-scheduler outperforms Corral because (i) Corral attempts
to place both map and reduce tasks on the same set of racks
to reduce shuffle network traffic, which imposes significant
container contentions on the set of racks; and (ii) Corral
neither aggregates the data transfers of the jobs to take full
advantage of OCS, nor attempts to maximize the number
of circuits to shorten the CCT. The above explanations can
also be demonstrated through Figure 5(b), which shows the
network traffic sent via OCS and EPS. We see that 95.2% of
the network traffic for Co-scheduler is sent via OCS, while
only 2.2% and 33.0% of the network traffic for Fair and
Corral is sent via OCS.

We also evaluate the performance improvements of
Co-scheduler over Fair and Corral for shuffle-heavy and
non-shuffle-heavy jobs, respectively. Figures 6(a) and 6(b)
show that Co-scheduler significantly improves the perfor-
mance of both shuffle-heavy and non-shuffle-heavy jobs. The
shuffle-heavy jobs have significant performance improvements
because Co-scheduler enables the use of OCS. As most of the
data transfers in shuffle-heavy jobs take advantage of OCS,
finish faster, and release the containers earlier, non-shuffle-
heavy jobs also benefit from the more network bandwidth and
computing resources. We also observe that the performance
improvements of the shuffle-heavy jobs are more significant
than those of non-shuffle-heavy jobs, since non-shuffle-heavy
jobs are not dominated by the shuffle, which is the main phase
optimized by the Co-scheduler.

Fig. 7. Effectiveness of different mechanisms.

C. Effectiveness of Different Mechanisms

We also evaluate the impact of different mechanisms in
Co-scheduler: data placement guideline generator (DP), task
placement guideline generator (TP), best reduce task schedule
selector (BSS), and OCS and Coflow aware scheduler (OCAS).
We only evaluate the performance of OCAS, and DP + OCAS,
compared with DP + TP + BSS + OCAS, where OCAS
is Fair scheduler when there is no guideline of map and
reduce tasks for shuffle-heavy jobs, DP + OCAS consists
of data placement and map task guideline, and DP + TP +
BSS + OCAS is Co-scheduler. We can only evaluate these
combinations of Co-scheduler components because (i) DP
cannot work without OCAS; and (ii) TP and BSS cannot work
without DP.

Figure 7 shows the contributions of different mechanisms,
in terms of the makespan of the workload, average JCT,
and average CCT. Compared with OCAS, DP + OCAS
achieves performance improvements on makespan, average job
completion time, and average CCT by 16%, 21%, and 25%,
respectively. This is because DP + OCAS attempts to place the
input data and map tasks in a limited number of racks, which
aggregates the shuffle data transfers of the shuffle-heavy jobs
to some extent. However, DP + OCAS has much worse per-
formance than DP + TP + BSS + OCAS (i.e., Co-scheduler),
since DP + OCAS only aggregates the map tasks but does not
have a mechanism to aggregate the reduce tasks. Without the
guideline for reduce tasks of the jobs, DP + OCAS cannot
effectively enable shuffle-heavy jobs to take advantage of
OCS, leading to worse performance than Co-scheduler.

D. Sensitivity Analysis

In this section, we conduct several sensitivity tests of
Co-scheduler. The experiment settings are the same as
Section V-A unless otherwise specified.

Sensitivity to oversubscription ratio. In this experiment,
we varied the oversubscription ratio in the EPS network
from 3:1 to 20:1. All the results are normalized by the
results of Fair scheduler with oversubscription ratio of 10:1.
Figures 10(a), 10(b), 10(c) show the makespan, average JCT,
and average CCT versus different oversubscription ratio.
We see that the makespan, average job completion time,
and average CCT with Co-scheduler are not sensitive to the
oversubscription ratio. This is because most of the shuffle
network traffic is sent via OCS and only a small amount
of network traffic is sent via EPS in Co-scheduler. However,
as the oversubscription ratio increases, the performance of Fair
and Corral are significantly degraded, since a large portion of
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Fig. 8. Sensitivity analysis of oversubscription ratio.

Fig. 9. Sensitivity analysis of portion of recurring jobs.

network traffic is still sent via EPS in Fair and Corral and they
cannot take full advantage of OCS.

Sensitivity to the portion of recurring jobs in the work-
load. We varied the portion of recurring jobs from 0% to 100%
in the workload. Figures 9(a), 9(b), 9(c) show the makespan,
average JCT, and average CCT versus the portion of recurring
jobs. Note that Corral is equivalent to Fair when there are not
any recurring jobs (i.e., 0%). The performance of Fair does
not change with the portion of recurring jobs, since it does
not rely on the predictable characteristics of recurring jobs.
On the contrary, both Co-scheduler and Corral leverage the
predictable feature to help with their decisions, hence it is not
surprising that the performance of both schedulers increases as
the portion of recurring jobs increases. Co-scheduler benefits
less than Corral does as the portion of recurring jobs increases,
primarily because Corral does not have any specific handling
to non-recurring jobs, while Co-scheduler generates guidelines
for non-recurring jobs as well as recurring jobs and thus relies
less heavily on the predictable feature.

Sensitivity to estimation error of Trem. Recall that we
exploit the estimation of Trem to schedule the tasks in
Co-scheduler. In this experiment, we varied the error rate of the
estimation of Trem by up to 50% to see how Co-scheduler per-
forms. We define the estimation error rate as |real−estimation|

real ,
where real is the actual Trem of the job and estimatation is
the estimated Trem.

Figures 10(a), 10(b), 10(c) show the makespan, average JCT,
and average CCT versus the estimation error. The results of
Fair and Corral are not shown in the figures as they do not
rely on the estimation of Trem. We see that the performance
improvements of Co-scheduler on makespan and average job
completion time decrease as the error rate increases, while the
variation of the error rate has less significant impact on the
average CCT. This is because of two reasons. First, as the error
rate increases, Co-scheduler cannot accurately select the best
set of racks to run reduce tasks of the jobs, which degrades

the JCTs of the jobs (and hence makespan). Second, although
Co-scheduler cannot accurately select the best set of racks,
selecting different possible schedules have slight variation on
the CCTs of the jobs.

However, even with high error rate, Co-scheduler still
outperforms Fair by 43% makespan and 51% average JCT, and
outperforms Corral by 18% makespan and 21% average JCT.
This demonstrates the robustness of Co-scheduler regarding to
the error in estimating Trem. Nevertheless, recent studies [28],
[29] show that the estimation of Trem can be estimated with
a low error rate around 2.9%.

VI. DISCUSSIONS

General DAGs. While we present our designs and results
in the Hadoop MapReduce framework in this paper, the ideas
can be generalized to many other DAG-based data-parallel
frameworks. Some frameworks (e.g., Hive [33] and Pig [34])
allow an application to be partitioned into several MapReduce
jobs, and thus Co-scheduler can be directly applied there to
each of the partitioned MapReduce jobs.

Other frameworks (e.g., Tez [35] and Spark [36]) allow
a job to be expressed as a complex DAG. Compared with
a MapReduce job, a DAG job typically involves multiple
communication stages. We can also extend Co-scheduler to
adapt these DAG-based frameworks. In this scenario, the aim
of Co-scheduler remains the same—enabling the communi-
cation stages in a DAG job to take advantage of OCS to
improve the job performance. To achieve so, Co-scheduler
needs to apply the guideline generating mechanisms in
Sections IV-E and IV-F to the parent tasks and child tasks of
every communication stage in a DAG job, guiding the tasks to
be placed on a certain number of racks and hence aggregating
the traffic whenever possible. As analyzed in Section IV-H,
the guideline generating mechanisms generate minimal com-
putation costs and do not lead to high overhead on the
scheduler.
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Fig. 10. Sensitivity analysis of estimation of Trem.

Wavelength selective switching (WSS). In our paper,
we assume that each rack can configure only one circuit to
another rack at a time. Recently, several papers [37], [38]
propose to use WSS to enable a rack to switch multiple
wavelengths to several racks at a time. We discuss below
how to extend Co-scheduler to this scenario. The overall goal
of Co-scheduler remains unchanged since the reconfiguration
delay still exists and elephant flows are preferred in WSS.
Co-scheduler aims to aggregate the map and reduce tasks to
a few racks, meaning that one rack may have data transfers
to several other racks at a time, while WSS indeed supports
data transfers from one rack to several other racks at a time.
Thus, Co-scheduler fits WSS perfectly.

Nevertheless, there are two aspects we need to adapt
Co-scheduler slightly to WSS. First, the way to estimate the
CCT of a Coflow in Co-scheduler needs to be updated:

T (C) = max

⎛
⎝ 1

W
max

i

∑
j

tij ,
1
W

max
j

∑
i

tij

⎞
⎠ , (15)

where W is the number of wavelengths WSS can support.
This is because the amount of traffic

∑
j tij from rack i to

all other racks can now be sent through multiple wavelengths.
Second, in Algorithm 1 we select the rack with the smallest
resource release time. As now there could be multiple choices
of racks, we could relax this algorithm a bit to select the top
W racks.

In summary, the goal of Co-scheduler does not deviate from
the main advantage of WSS. On the contrary, we envision that
an extended version of Co-scheduler and WSS can comple-
ment each other well to further improve the job performance
and we leave this as one of our future work.

VII. RELATED WORK

Hybrid-DCN. Previous studies [9]–[11] have demonstrate the
feasibility of utilizing OCS in datacenter networks to improve
network capacity. One common assumption in these proposals
is that in a datacenter, a rack has elephant flows to only a few
racks and mice flows to other racks, which may not be true
for the data-parallel frameworks with current job schedulers.
In this paper, we aim to design a job scheduler to take
advantage of OCS in Hybrid-DCN.
Job schedulers. Manyschedulers [4], [6], [15]–[17], [39]–[44]
have been designed to improve job performance of
data-parallel clusters with different objectives, such as
high data locality, deadline driven, energy efficient, and

network aware. Unfortunately, none of these schedulers focus
on scheduling tasks to take advantage of optical networks.
For example, the current state-of-the-art schedulers in Hadoop
YARN, Fair scheduler [15] and Delay scheduler [4], focus
on achieving high data locality and schedule the tasks of
jobs across an entire cluster. Similarly, ShuffleWatcher [6]
aims to evenly distribute the shuffle network traffic spatially
and temporally among different racks to reduce the network
contention. The above schedulers totally disaggregate the
data transfers of the jobs, which fails to take advantage
of Hybrid-DCN to solve the network bottleneck for high
performance. Corral [16] is a network-aware scheduler that
attempts to reduce the data transfers between map and reduce
stages of a job by placing the map and reduce tasks of the
job together on the same racks. Although Corral somehow
aggregates the data transfers of the job to a fewer racks, the
key idea behind Corral is to avoid using the network, rather
than utilizing OCS to accelerate cross-rack traffic transfer.
Cluster configuration. Besides job scheduling, many
researchers focus on how to configure the Hadoop frame-
work on various clusters to achieve high performance
[40]–[42], [45]–[47]. For example, the performance of Hadoop
framework is highly dependent on the cluster configurations.
Li et al. [40], [41] have proposed to use hybrid scale-up and
scale-out heterogeneous machines to process the workloads
that are dominated by many small jobs. Chen et al. [46] have
proposed Silhouette, a system that trains a prediction model
based on small subset of tasks and then selects the best con-
figurations for analytic frameworks. Some other works [42],
[45], [47] have proposed methods on selecting file systems or
modeling data replica strategies on various clusters, such as
HPC and virtualized clusters. Our paper is orthogonal to these
papers, whose conclusions and findings can be adapted with
Co-scheduler for high performance.
Coflow. The Coflow abstraction was first documented
in [18], [48]. The objective of Coflow scheduling is often
to minimize the average CCT. This problem is proved
to be NP-hard [19], [20], as it can be reduced from the
concurrent open-shop scheduling problem [49]. Many heuristic
scheduling algorithms [19], [23], [50]–[57] were proposed to
minimize the CCT in traditional EPS network to improve the
performance of data-parallel jobs. As optical networks become
more and more popular in datacenter networks, researchers
extend the Coflow abstraction into optical networks and
proposes several algorithms to schedule Coflows in optical
networks [20], [58]–[61].
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The above papers schedule the Coflows assuming that the
source-destination pairs of the Coflows are fixed. However,
current job scheduling algorithms do not schedule the tasks of
jobs in a way that facilitates the minimization of CCTs, which
may lead to poor job performance. Different job scheduling
algorithms may result in different source-destination pairs of
flows and thus significantly impacts on the CCTs of jobs.
In this paper, we propose a job scheduler that improves the job
performance by coordinating the task placement to minimize
the CCTs in OCS.

VIII. CONCLUSION

We propose Co-scheduler, a job scheduler that aims to
improve job performance by exploiting OCS in Hybrid-DCN
and minimizing the CCT. Co-scheduler leverages the fact that
modern workloads consist of both recurring and non-recurring
jobs, and uses pre-generated guidelines to guide input data
and task placements. For a non-recurring job, Co-scheduler
dynamically infers its job characteristics to maximize the
possibility to take advantage of OCS for its shuffle data
transfers and thus minimizing the CCT. For a recurring job,
Co-scheduler uses an improved latency response model to
guide the predictions of optimal data and task placements. Our
trace-driven simulation shows that Co-scheduler outperforms
the state-of-the-art job schedulers in terms of makespan,
average job completion time, and average CCT on Hybrid-
DCN. In the future, we will explore using machine learning
techniques to automatically learn how to conduct scheduling
and investigate more sophisticated methods of estimating the
remaining processing time.
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