
Scalable Parallel Programming in Python with Parsl
Yadu Babuji

University of Chicago
yadunand@uchicago.edu

Anna Woodard
University of Chicago

annawoodard@uchicago.edu

Zhuozhao Li
University of Chicago

zhuozhao@uchicago.edu

Daniel S. Katz
University of Illinois at
Urbana-Champaign
d.katz@ieee.org

Ben Clifford
University of Chicago
bzc@uchicago.edu

Ian Foster
Argonne & U.Chicago

foster@anl.gov

Michael Wilde
ParallelWorks

wilde@parallelworks.com

Kyle Chard
University of Chicago
chard@uchicago.edu

ABSTRACT
Python is increasingly the lingua franca of scientific computing. It is
used as a higher level language to wrap lower-level libraries and to
compose scripts from various independent components. However,
scaling and moving Python programs from laptops to supercomput-
ers remains a challenge. Here we present Parsl, a parallel scripting
library for Python. Parsl makes it straightforward for developers to
implement parallelism in Python by annotating functions that can
be executed asynchronously and in parallel, and to scale analyses
from a laptop to thousands of nodes on a supercomputer or dis-
tributed system. We examine how Parsl is implemented, focusing
on syntax and usage. We describe two scientific use cases in which
Parsl’s intuitive and scalable parallelism is used.

ACM Reference Format:
Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Ian
Foster, Michael Wilde, and Kyle Chard. 2019. Scalable Parallel Programming
in Python with Parsl. In Practice and Experience in Advanced Research Com-
puting (PEARC ’19), July 28-August 1, 2019, Chicago, IL, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3332186.3332231

1 INTRODUCTION
Python is widely used in science and engineering. It is a high-level
language, is easy to learn and intuitive, and does not require a
compiler. However, for use in science, it has several challenges,
most notably related to parallelization and scalability. Parsl [2, 3],
an open-source parallel programming library for Python, aims to
address these needs by providing simple, reliable, scalable, and
flexible parallelism. Parallel programs are constructed in Python
using a compositional model, in which components written in
Python and other languages (e.g., binaries, shell commands, or
external applications) can be easily used in combination. Parsl
allows data-oriented workflows to be constructed by implicitly

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3332231

linking together invocations of these components via shared data
in the form of Python objects or files.

Parsl is designed to facilitate parallel execution at a wide range of
scales. Run time of individual tasks can range from seconds to hours,
and programs can be scaled transparently to work on platforms
from a laptop to a supercomputer or distributed computing system.
It is also designed to be accessible from within Jupyter notebooks,
thus enabling users to control large-scale execution from the user-
centric notebook environment. To enhance usability, Parsl stays as
close to standard Python as possible, and maintains compatibility
with the growing SciPy ecosystem.

Parsl includes two new constructs. The first is an App, which
is indicated by a decorator around a Python function that can
be executed asynchronously, and that declares other information
such as input and output dependencies for linking together with
other Apps. This provides an intuitive, implicit, and natural way of
expressing parallelism. When an App is called, Parsl immediately
returns the second new construct, an object called a future, which
is a placeholder for a return value from an App that may not have
completed.

Parsl takes a very different approach to parallelism than prior
efforts that rely on domain specific languages (DSL) [13, 17],
configuration-based models [8, 12, 14], graph descriptions [15, 16],
and compiled language extensions [5] to support such composition
and parallelism. When compared with other Python libraries de-
signed to support parallelism (e.g., Dask [10] and Fireworks [15]),
Parsl can scale to orders of magnitude larger computing environ-
ments and supports a much broader range of parallel use cases
(e.g., low latency, wide area data management, execution on clouds,
clusters, and supercomputers).

In this paper we describe how parallel programs can be con-
structed in Parsl, how Parsl is designed to support different scala-
bility and parallelism requirements, and how Parsl has been used
in science.

2 DESIGN AND IMPLEMENTATION
Parsl is designed for Python and implemented as a Python library.
When executing a Parsl program, Parsl intercepts invocations of
Apps and returns futures. A future is an object that can be used
to access the results of an asynchronous computation. Parsl stores

https://doi.org/10.1145/3332186.3332231
https://doi.org/10.1145/3332186.3332231

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Y. Babuji et al.

invocations of Apps in a dynamic task graph. The graph is dynamic
in the sense that it is not defined a priori and instead is built during
execution. The task graph is a directed acyclic graph (DAG), where
nodes represent tasks and edges represent input/output data passed
between tasks.

Parsl’s runtime system is responsible for managing the execution
of the task graph on configured resources. The runtime converts the
App invocation (including the function body and any input argu-
ments) into a serialized form that can run locally or be transferred
to and executed on a remote system. The runtime also manages
execution by updating the DAG when new tasks are created and
queuing serialized tasks for execution when it determines depen-
dencies are met. During execution, Parsl monitors the state of all
tasks, captures errors, and implements retry logic, if configured.
When a task completes executing, the result (or error) is serialized
and passed back to the Parsl program via a future. Parsl’s runtime
is entirely event-driven. Asynchronous callbacks on dependent
futures communicate results to the Parsl program, trigger DAG
updates, and result in queuing of dependent tasks.

Parsl is designed to function efficiently in a range of scenarios,
from a few very short duration tasks to millions of long-running
tasks scattered across hundreds of thousands of worker nodes run-
ning on a variety of execution resources including clouds and
clusters. Consequently, we have designed Parsl around a modu-
lar execution architecture with two primary components, providers
and executors. Providers abstract execution resources while execu-
tors abstract the mechanism by which the tasks are executed (e.g.,
threads, pilot jobs, distributed execution). The provider interface
is a simple Python-based abstraction that supports three actions:
submit a job for execution, query the status of a job, and cancel a
job. Parsl implements providers for local execution (fork), Amazon
and Google cloud platforms (using cloud-specific APIs), and for
cluster and supercomputer schedulers such as Slurm, Torque/PBS,
HTCondor, and Cobalt.

To support a broad variety of use cases, Parsl includes four core
executors. The Thread Pool Executor is designed for local, thread-
based execution of lightweight tasks. The Low Latency Executor
(LLEX) is designed for small-scale deployments (tens of nodes)
and provides very fast task execution by utilizing a bare bones
executor implementation and persistent connections between Parsl
and configured workers. The High Throughput Executor (HTEX)
implements a pilot job model that scales to 2,000 nodes and millions
of tasks, deploying a multi-threaded Python-based manager to each
node and using asynchronous messaging to manage execution of
tasks. Finally, the Extreme Scale Executor (EXEX) is designed for
deployments with thousands of nodes and longer running tasks; it
deploys a distributedMPI job across a large-scale computer network
and relies on MPI communication to coordinate execution of tasks.

Parsl simplifies program portability by separating code and con-
figuration. A Parsl program is executed by loading a Python-based
configuration object that defines the providers and executors to
be used as well as user-specific options describing how these re-
sources should be used. The configuration object can be be shared
and customized, both manually and programmatically, for different
deployments. An example of the simplest possible configuration
object, corresponding to a thread pool running locally, is shown
in Listing 1. An example configuration object for Stampede2 at

the Texas Advanced Computing Center is shown in Listing 2. This
configuration uses HTEX to submit tasks from a login node (Lo-
calChannel). It requests an allocation of 256 nodes, from the normal
partition, for up to six hours.

from parsl.config import Config
from parsl.executors import ThreadPoolExecutor

thread_config = Config(
executors=[ThreadPoolExecutor(max_threads=2)]

)

Listing 1: Example of a Parsl configuration object for run-
ning lightweight tasks in a thread pool on the local machine.

from parsl.addresses import address_by_hostname
from parsl.channels import LocalChannel
from parsl.config import Config
from parsl.data_provider.scheme import GlobusScheme
from parsl.executors import HighThroughputExecutor
from parsl.providers import SlurmProvider

uuid = "ceea5ca0-89a9-11e7-a97f-22000a92523b"

stampede_config = Config(
executors=[

HighThroughputExecutor(
label="stampede2",
worker_debug=False,
address=address_by_hostname(),
provider=SlurmProvider(

channel=LocalChannel(),
nodes_per_block=256,
partition='normal',
worker_init='source activate parsl',
walltime="6:00:00"

),
storage_access=[

GlobusScheme(
endpoint_uuid=uuid,
endpoint_path="/",
local_path="/"

)
]

)
],

)

Listing 2: Example of a Parsl configuration object for Stam-
pede2.

Parsl also provides a range of other features that are needed by
scientific applications, including wide area data management using
Globus [6], HTTP, and FTP; fault tolerance with workflow-level
checkpointing and App caching; automated elasticity on clouds
and clusters; multi-site execution across computational resources;

Scalable Parallel Programming in Python with Parsl PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

resource matching to map Apps to appropriate hardware; workflow
and fine grain resource monitoring; and management of container-
based applications.

3 PARALLEL PROGRAMMINGWITH PARSL
We will now illustrate, with examples, how to use some key ele-
ments of programming with Parsl. Parallel programming is imple-
mented in Parsl with Apps. A Python function can be converted
into a Parsl App simply by prepending the appropriate decorator.
For an App that executes Python code in parallel, the @python_app

decorator is used. If the Python function instead returns a string
of Bash code to be executed in parallel, it is designated with the
@bash_app decorator. An App can be called from standard Python
code, while Parsl handles both asynchronous and parallel execution.
The following is a basic example of a Python App:
@python_app
def hello():

return 'Hello, world!'

When a Parsl App is invoked, the Parsl runtime registers an
asynchronous task, and a future object is immediately returned.
Parsl futures implement an asynchronous, non-blocking method
future.done() to monitor the App execution status. This method
returns true if the App has finished, and otherwise returns false.
A synchronous method future.result(), is also provided, which
will block until the computation has completed and then return a
value to the calling program. For Python Apps, the future.result()
method yields the return value of the wrapped Python function,
while for Bash Apps, the value that is returned is the UNIX exit
code. If either type of App fails to complete, an exception will be
raised.

Parsl apps are called using the standard Python syntax. For ex-
ample,
print(hello().result())

invokes the hello App defined above, which returns a future object.
Calling the result method of the future returns the string "Hello,
World!"

Input data are passed as arguments to the App invocation. Output
data are passed back either as a return value or an output file. Three
Python types are supported as either inputs or outputs: 1) arbitrary,
serializable Python objects, 2) Parsl File objects (described in more
detail below), and 3) Parsl futures. To examine how this works,
consider the following App:
@python_app
def product(a, b):

return a * b

Calling product with the arguments 2 and 3 will return a future;
calling the result() method of that future will yield 6. Similarly,
one can pass futures as arguments. Parsl will wait until the input
task has completed, then dispatch the dependent task with the input
futures replaced by their results. This is illustrated in the example
below, which prints 120.
f1 = product(2, 3)
f2 = product(4, 5)

print(product(f1, f2).result())

import parsl
from parsl.app import python_app

parsl.load()

@python_app
def divide(numerator, denominator):

return numerator / denominator

Produce a divide by zero exception
future = divide(10, 0)

Catch and handle the exception
try:

future.result()
except ZeroDivisionError:

print('Oops! You tried to divide by 0!')

Listing 3: An example of exception handling with Parsl.

The special keyword arguments inputs and outputs are provided
to allow developers to dynamically specify collections of inputs or
outputs. For example,
@python_app
def product(inputs=[]):

result = 1
for i in inputs:

result *= i
return result

f1 = product([2, 3])
product([f1, 4, 5]).result()

will also print 120.
As Parsl apps are potentially executed remotely, they must con-

tain all required dependencies in the function body. An example is
shown below that makes use of time module to wait five seconds
before returning.
@python_app
def slow_hello():

import time
time.sleep(5)
return 'Hello World!'

Parsl allows the developer to handle exceptions and errors within
an App without halting the program and potentially interrupting
complex workflows. A minimal example is shown in Listing 3. In
addition to being able to capture exceptions raised by a specific
App, Parsl also raises dependency errors when Apps are unable to
execute due to failures in prior dependent apps. That is, an App
that is dependent on the successful completion of another app will
fail with a dependency error if any of the Apps on which it depends
fail.

For Bash Apps, the stdout and stderr special keywords allow
files to be configured for redirection of the script’s standard output
and standard error streams, respectively. An example Bash App is
shown below.
@bash_app
def echo_hello(stdout='echo-hello.stdout'):

return 'echo "Hello, world!"'

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Y. Babuji et al.

As with Python Apps, Bash Apps are invoked using the standard
Python syntax:
echo_hello().result()
with open('echo-hello.stdout', 'r') as f:

print(f.read())

Parsl allows for common parallel programming patterns to be
easily expressed using these simple building blocks. For example,
massively parallel task execution can be achieved by repeatedly
calling Apps in a loop, as is common in Monte Carlo simulations.
Map-reduce execution can be added by collecting the futures from
a loop (the map phase) and passing them as inputs to another App
(the reduce phase); and complex dataflows can be constructed by
chaining together a series of apps.

Listing 4 illustrates a dataflow utilizing two Python Apps. The
pi App inserts a large number of random points into a square,
determines whether each point is inside or outside a circle inscribed
in the square, and uses this data to compute an estimate of pi.
The workflow invokes several instances of the pi App which run
asynchronously in parallel, then passes the corresponding futures
to the mean App, which computes an average for the estimate of pi.

Listing 5 illustrates an example dataflow comprised of two Bash
apps and a single Python App. The workflow starts multiple in-
stances of the generate App asynchronously in parallel and pro-
duces output files, in this case containing random numbers. This
step could represent a scientific simulation or analysis. The result-
ing files are then passed via futures to the Bash App concat that
combines the generated files into a single file. Note that the Parsl
script does not require explicit barriers or synchronization primi-
tives, as Parsl delays execution of the concat App until all output
files are created from the generate App. Finally, the Python total

App parses the concatenated output file and computes the total by
adding each line. At the conclusion of the workflow we insert a call
to retrieve the result of the final future. This step ensures that the
program waits for the workflow to complete.

Parsl objects include the Parsl file object. The Parsl file abstrac-
tion is important for enabling execution location independence of
a Parsl program and avoiding hard-coding paths. Parsl files can be
defined for local, HTTP, FTP, and Globus-accessible files. When
a Parsl file is passed, Parsl’s runtime uses a specialized data man-
ager to transfer the file to where it is needed and to transparently
translate the physical location of the file for Apps that need it.

Parsl supports modularization of sophisticated workflows in an
intuitive, Pythonic way. Apps can be defined in libraries that are
agnostic about the execution site and grouped by functionality. This
has many benefits, including: 1) readability, 2) logical separation
of components, and 3) reusability of components. The configura-
tion(s) can be defined in a module or file saved independently, to
be imported into the control script depending on which execution
resources should be used. As an example, consider that the two
configuration objects defined in Listing 1 and Listing 2 are saved
to a file named config.py, and the following code is saved in a file
called library.py.
from parsl.app import python_app

@python_app
def increment(x):

return x + 1

import parsl
from parsl.app import python_app

parsl.load()

pts_per_estimate = 10**6
n_estimates = 10

@python_app
def pi(n_points):

"""Parsl app to estimate pi.

Consider a circle of radius R inscribed inside a
square of length 2r. The area of the circle is
pi * r^2. The area of the square is (2r)^2. Thus, if
`n_points` uniformly distributed random points
are dropped within the square, then approximately
`n_points` * pi / 4 will be inside the circle.
"""
from random import random

inside = 0
for i in range(n_points):

Drop a random point in the box.
x, y = random(), random()
Count points within the circle.
if x**2 + y**2 < 1:

inside += 1

return (inside * 4 / n_points)

@python_app
def mean(inputs=[]):

return sum(inputs) / len(inputs)

estimates = [pi(pts_per_estimate) for i in range(n_estimates)]

mean_pi = mean(inputs=estimates)

print("Pi is approximately: {:.5f}".format(mean_pi.result()))

Listing 4: An example Parsl program which estimates the
value of π using the Monte Carlo method. A number of sep-
arate estimates are run in parallel. Finally, the mean of the
parallel computations is computed.

Further, consider the following control script, which imports the
increment App. This file must import and load the configuration
from config.py before calling the increment app from library.py:
import parsl
from config import thread_config
from library import increment

parsl.load(local_threads)

futures = [increment(i) for i in range(5)]
for i, f in zip(range(5), futures):

print('{} + 1 = {}'.format(i, f.result()))

This will run in a local thread pool, and print

Scalable Parallel Programming in Python with Parsl PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

import os

import parsl
from parsl.app import python_app, bash_app

parsl.load()

App that generates a random number
@bash_app
def generate(outputs=[]):

return "echo $((RANDOM)) &> {outputs[0]}"

App that concatenates input files into a single output file
@bash_app
def concat(inputs=[], outputs=[],

stdout="stdout.txt", stderr='stderr.txt'):
return "cat {} > {}".format(" ".join(inputs), outputs[0])

App that calculates the sum of values
in a list of input files
@python_app
def total(inputs=[]):

total = 0
with open(inputs[0], 'r') as f:

for l in f:
total += int(l)

return total

Create five files with random numbers
output_files = []
for i in range(5):

path = os.path.join(os.getcwd(), 'random-{}.txt'.format(i))
output_files.append(generate(outputs=[path]))

Concatenate the files into a single file
inputs = [i.outputs[0] for i in output_files]
outputs = [os.path.join(os.getcwd(), 'all.txt')]
cc = concat(inputs=inputs, outputs=outputs)

Calculate the sum of the random numbers
total = total(inputs=[cc.outputs[0]])
print(total.result())

Listing 5: An example Parsl program that generates random
numbers in parallel, concatenates the results, and computes
the sum of the random numbers.

0 + 1 = 1
1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
4 + 1 = 5

To modify this program to run on the Stampede2 supercom-
puter, the developer would simply replace thread_config with
stampede_config.

Developers often run the same workflow many times, with only
incremental changes to each iteration. To avoid repeated execution
of the same computations, developers may enable memoization of
Parsl Apps. If enabled, a cache of the name, arguments, and function

import os

import parsl
from parsl.app import bash_app
from parsl.data_provider.files import File

parsl.load()

App that copies the contents of
one or more files to another file
@bash_app
def copy(inputs=[], outputs=[]):

return 'cat %s &> %s' % (inputs[0], outputs[0])

Create a test file
path = os.path.join(os.getcwd(), 'in.txt')
with open(path, 'w') as f:

f.write('Hello World!\n')

Create Parsl file objects
infile = File(os.path.join(os.getcwd(), 'in.txt'))
outfile = File(os.path.join(os.getcwd(), 'out.txt'))

Call the copy app with the Parsl file
future = copy(inputs=[infile], outputs=[outfile])

Read what was redirected to the output file
with open(future.outputs[0].result(), 'r') as f:

print(f.read())

Listing 6: An example Parsl program which uses the Parsl
file abstraction.

import parsl
from parsl.app import python_app

parsl.load()

@python_app
def sort_numbers(inputs=[]):

with open(inputs[0].filepath, 'r') as f:
strings = [n.strip() for n in f.readlines()]
strings.sort()
return strings

unsorted_file = File(
'https://raw.githubusercontent.com/'
'Parsl/parsl-tutorial/master/input/unsorted.txt'

)

f = sort_numbers(inputs=[unsorted_file])
print(f.result())

Listing 7: An example Parsl program which uses the Parsl
file abstraction to access a remote file.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Y. Babuji et al.

body will be maintained. App caching can be enabled by setting the
cache argument in the python_app or bash_app decorator to True (by
default it is False). App caching can be globally enabled by setting
app_cache=True in the configuration. An example demonstrating
App caching is shown in Listing 8.

Parsl implements checkpointing, which enables the workflow
state to be saved and then used at a later time to resume execution
from that point. Checkpointing facilitates recovery in the event of
failure of the Parsl control process. Parsl checkpointing is incre-
mental, i.e., each explicit checkpoint saves state changes from the
previous checkpoint. Thus, the full history of a workflow can be
distributed across multiple checkpoints.

4 EVALUATION
We have investigated Parsl scaling using the HTEX and EXEX
executors on the XE component of Blue Waters at NCSA [4], a 13-
petaflop Cray XE/XK hybrid system comprising 22,636 XE compute
nodes (362,240 cores) and 4,288 XK compute nodes (33,792 cores)
with an additional 4,228 Kepler Accelerators.

Figure 1 shows weak scaling results when executing 10 tasks
per core for 10-sec and 100-sec tasks. For each executor and task
duration, we deployed a worker per core on each node. We show re-
sults when increasing the number of nodes from 128 to 2,048 (∼64K
workers) for 10-sec tasks and from 128 to 8,192 (∼256K workers)
for 100-sec tasks. The results show that Parsl executors scale with
the number of workers and tasks without significant performance
degradation. Parsl scales to 2,048 nodes (∼640K tasks) with HTEX
and 8,192 nodes with EXEX (∼2.56M tasks).

Figure 1 also illustrates the overhead of task submission: in order
to scale efficiently we require longer duration tasks in order to
keep cores busy. For good performance we estimate a need for task
duration / workers ≥ 0.01. For example, when using 10K cores, it is
best to use tasks that are at least 100 sec.

We also explored the scalability of Parsl when compared with al-
ternative Python-based libraries: IPyParallel, Dask distributed, and
FireWorks. We found that Dask distributed performed slightly bet-
ter than HTEX and EXEX when there are fewer than 256 workers.
IPyParallel and FireWorks had significantly worse scaling perfor-
mance. The maximum number of nodes (and workers) we were able
to scale to were: IPyParallel 64 nodes (2,048 workers); FireWorks
32 nodes (1,024 workers); and Dask distributed 128 nodes (4,096
workers). These results highlight the ability of Parsl to scale to very
large systems.

5 USE CASES
Parsl has been used in a variety of scientific domains including
biology, cosmology, materials science, chemistry, and social science.
Two examples of its ongoing use are in a parallel scientific workflow
for simulating cosmological images and as the basis for a high
performance machine learning inference system.

Cosmology: In preparation for the imminent arrival of data
from the Large Synoptic Survey Telescope (LSST), the Dark En-
ergy Science Collaboration (DESC) is using Parsl to simulate raw
exposures from the telescope. The workflow relies on the imSim
software package [9] to construct images based on catalogs of as-
tronomical objects, taking into account systematic effects of the

import parsl
from parsl.app import python_app, bash_app
from parsl.providers import LocalProvider
from parsl.channels import LocalChannel
from parsl.config import Config
from parsl.executors import HighThroughputExecutor

local_htex = Config(
executors=[

HighThroughputExecutor(
cores_per_worker=1,
provider=LocalProvider(

init_blocks=1,
max_blocks=10,

)
)

],
)

parsl.load(local_htex)

@python_app(cache=True)
def slow_message(message):

import time
time.sleep(5)
return message

First call to slow_message will calculate the value
first = slow_message("Hello World!")
print("First: {}".format(first.result()))

Second call to slow_message with the same arguments
will return immediately
second = slow_message("Hello World!")
print("Second: {}".format(second.result()))

Third call to slow_message with different arguments
will again wait
third = slow_message("Greetings, World!")
print("Third: {}".format(third.result()))

Listing 8: An example Parsl program that shows two calls
to the slow message app with the same message. The first
call to the app takes five seconds. Because App caching is
enabled, the second call returns immediately, as the result
is retrieved from the memoization table instead of being
computed. Finally, the third call again takes five seconds, be-
cause it is called with a different argument.

atmosphere, optics, and telescope sensors. The workflow coordi-
nates the execution of imSim for each sensor using input instance
catalogs. Parsl manages the invocation of imSim, using Singularity
containers to encapsulate the entire software stack. The Parsl work-
flow is responsible for processing instance catalogs, determining
how to pack simulation workloads onto compute nodes, and invok-
ing the Singularity containers deployed to each node. The workflow
involves huge amounts of data: it simulates each of the LSST’s 189
telescope sensors observing tens of thousands of instance catalogs,
some containing millions of astronomical objects. The simulation

Scalable Parallel Programming in Python with Parsl PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Figure 1: Weak scaling results when executing 10 tasks per core for 10-sec and 100-sec tasks

workflow has consumed more than 30M core hours to-date, using
4K nodes (256K cores) on Argonne’s Theta supercomputer and
2K nodes (128K cores) on NERSC’s Cori supercomputer, each for
several days.

DLHub: The Data and Learning Hub for Science (DLHub) [7]
provides the ability for researchers to publish, share, and invoke
machine learning models. It allows researchers to publish their
model by depositing and describing them in a catalog, obtaining
a persistent identifier, and setting access permissions. Others can
then discover, reuse, and cite the published models. In order to
enable invocation of models, DLHub includes a Parsl-based ML
inference engine that is optimized for executing large numbers of
bag-of-tasks applications. DLHub provides a web service interface
through which users can invoke a model on a set of input data (e.g.,
primitive types or files). DLHub uses Parsl to manage an elastic
pool of resources (using Kubernetes) on which inference tasks are
executed in containers. Parsl makes it easy to manage the parallel
invocation of these tasks, scaling to thousands of connectedworkers
and offering low-latency invocation.

6 RELATEDWORK
There are a number of workflow systems that support the orches-
trated execution of task dependency graphs. Many, such as Pega-
sus [12] and Galaxy [14] implement a static DAG model which is
defined (often in XML) and then executed. Other approaches such
as Swift [17], Swift/T [18], and NextFlow [13] implement their own
languages for expressing workflows. Unlike Parsl, these approaches
do not provide an intuitive and integrated way of parallelizing
Python code.

Python-based workflow systems such as FireWorks [15], Apache
Airflow [1], and Luigi [16] offer a mechanism for expressing work-
flow graphs in Python. However, each is designed for a different
purpose than Parsl. For example, FireWorks focuses on providing
reliable execution of longer running tasks, Airflow implements a

model for executing task graphs expressed in Python, and Luigi
introspects Python classes to derive connected components.

Dask [10] is Python library designed to support parallel data
analytics. It offers parallel implementations of common Python li-
braries (e.g., NumPy and Pandas) that can replace their non-parallel
equivalents. Dask distributed [11] implements a general model for
integrating distributed execution on external clusters. It implements
a scheduler that can manage execution across nodes in a cluster.
Like Parsl, Dask’s underlying APIs provide for wrapping of func-
tions and asynchronous invocations using futures. However, Parsl
offers various additional features such as flexible executor models,
increased scalability to the largest supercomputers, and support for
external applications and wide area transfers.

7 SUMMARY
Parsl addresses the growing need in science to provide an easy-to-
use means of developing and executing parallel programs in Python,
and specifically, those that are composed of various components.
Parsl’s innate flexibility and scalability allows for seamless portabil-
ity and sharing of Parsl programs, allowing researchers to develop
programs at small scale using threads, execute the same program
on a campus cluster using a pilot job model, and then scale that
program to thousands of nodes on a supercomputer, all by modify-
ing only a single configuration object. Initial adoption of Parsl has
been encouraging, with successful use cases in biology, materials
science, social science, and computational chemistry, to name just
a few. Further, evaluation of Parsl’s performance highlights that
it can significantly outperform comparable parallelism libraries in
Python, scaling to 256,000 workers.

Parsl is an open source project available on GitHub: https://
github.com/Parsl/parsl. Community contributions are welcome.

ACKNOWLEDGMENT
This work was supported in part by NSF award ACI-1550588 and
DOE contract DE-AC02-06CH11357. This work made use of Blue

https://github.com/Parsl/parsl
https://github.com/Parsl/parsl

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Y. Babuji et al.

Waters, which is supported by the National Science Foundation
(awards OCI-0725070 and ACI-1238993) and the state of Illinois.

REFERENCES
[1] Airflow Project. Airflow. https://airflow.apache.org/. Accessed Feb 1, 2019.
[2] Y. Babuji, K. Chard, I. Foster, D. S. Katz, M. Wilde, A. Woodard, and J. Wozniak.

2018. Parsl: Scalable Parallel Scripting in Python. In 10th International Workshop
on Science Gateways (IWSG 2018). CEUR-WS.org. http://ceur-ws.org/Vol-2357/
paper11.pdf

[3] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R.
Chard, J. Wozniak, I. Foster, M. Wilde, and K. Chard. 2019. Parsl: Pervasive
Parallel Programming in Python. In 28th ACM International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). ACM. https://doi.org/
10.1145/3307681.3325400

[4] B. Bode, M. Butler, T. Dunning, T. Hoefler, W. Kramer, W. Gropp, and W.-m. Hwu.
2013. The Blue Waters super-system for super-science. In Contemporary High
Performance Computing. Chapman and Hall/CRC, 339–366.

[5] K. M. Chandy and C. Kesselman. 1993. Compositional C++: Compositional
parallel programming. In Languages & Compilers for Parallel Computing. Springer,
124–144.

[6] K. Chard, S. Tuecke, and I. Foster. 2014. Efficient and Secure Transfer, Synchro-
nization, and Sharing of Big Data. IEEE Cloud Computing 1, 3 (Sep. 2014), 46–55.
https://doi.org/10.1109/MCC.2014.52

[7] R. Chard, Z. Li, K. Chard, L. T. Ward, Y. N. Babuji, A. Woodard, S. Tuecke, B.
Blaiszik, M. J. Franklin, and I. T. Foster. 2019. DLHub: Model and data serving for
science. In 33rd IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE.

[8] Common Workflow Language. Common Workflow Language Specifications,
v1.0.2. https://www.commonwl.org/v1.0/. Accessed Feb 1, 2019.

[9] Dark Energy Science Collaboration (DESC). imSim: GalSim based Large Syn-
optic Survey Telescope (LSST) image simulation package. https://github.com/
LSSTDESC/imSim. Accessed Feb 1, 2019.

[10] Dask Development Team. Dask: Library for dynamic task scheduling. https:
//dask.org. Accessed Feb 1, 2019.

[11] Dask Development Team. Dask distributed. http://distributed.dask.org/en/latest/.
Accessed Feb 1, 2019.

[12] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling, R. Mayani, W.
Chen, R. da Silva, M. Livny, et al. 2015. Pegasus, a workflow management system
for science automation. Future Generation Computer Systems 46 (2015), 17–35.

[13] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
Notredame. 2017. Nextflow enables reproducible computational workflows.
Nature Biotechnology 35, 4 (2017), 316.

[14] J. Goecks, A. Nekrutenko, and J. Taylor. 2010. Galaxy: A comprehensive approach
for supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biology 11, 8 (2010), R86.

[15] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G.
Petretto, G.-M. Rignanese, G. Hautier, et al. 2015. FireWorks: A dynamic workflow
system designed for high-throughput applications. Concurrency and Computation:
Practice and Experience 27, 17 (2015), 5037–5059.

[16] Luigi Team. Luigi. https://github.com/spotify/luigi. Accessed Feb 1, 2019.
[17] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster. 2011.

Swift: A language for distributed parallel scripting. Parallel Comput. 37, 9 (2011),
633–652.

[18] J. M. Wozniak, T. G. Armstrong, M.Wilde, D. S. Katz, E. Lusk, and I. T. Foster. 2013.
Swift/t: Large-scale application composition via distributed-memory dataflow
processing. In 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid). IEEE, 95–102.

https://airflow.apache.org/
http://ceur-ws.org/Vol-2357/paper11.pdf
http://ceur-ws.org/Vol-2357/paper11.pdf
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1109/MCC.2014.52
https://www.commonwl.org/v1.0/
https://github.com/LSSTDESC/imSim
https://github.com/LSSTDESC/imSim
https://dask.org
https://dask.org
http://distributed.dask.org/en/latest/
https://github.com/spotify/luigi

	Abstract
	1 Introduction
	2 Design and Implementation
	3 Parallel Programming with Parsl
	4 Evaluation
	5 Use Cases
	6 Related work
	7 Summary
	References

