
Coding the Computing Continuum:
Fluid Function Execution in Heterogeneous

Computing Environments
Rohan Kumar1, Matt Baughman1, Ryan Chard2, Zhuozhao Li1,2, Yadu Babuji1,2, Ian Foster1,2, and Kyle Chard1,2

1Department of Computer Science, University of Chicago, Chicago, IL, USA
2Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA

Abstract—Advances in network technologies have greatly de-
creased barriers to accessing physically distributed computers.
This newfound accessibility coincides with increasing hardware
specialization, creating exciting new opportunities to dispatch
workloads to the best resource for a specific purpose, rather
than those that are closest or most easily accessible. We present
Delta, a service designed to intelligently schedule function-based
workloads across a distributed set of heterogeneous computing
resources. Delta implements an extensible architecture in which
different predictors and scheduling algorithms can be integrated
to provide dynamically evolving estimates of function execution
times on different resources—estimates that can be used to deter-
mine the most appropriate location for execution. We describe
predictors for function runtime, data transfer time, and cold-
start resource provisioning and configuration delay; dynamic
learning methods that update predictor models over time; and
scheduling strategies that take into account both function and
endpoint information. We show that these methods can halve
workload makespan when compared with a strategy that selects
the fastest resource, and decrease makespan by a factor of five
when compared to a round robin strategy, when deployed on a
heterogeneous testbed with resources ranging from a Raspberry
Pi to a GPU node in an academic cloud.

Index Terms—Computing continuum, function as a service,
serverless, heterogeneous computing, scheduling.

I. INTRODUCTION

The last decade has seen rapid movement towards the natu-
ral next step in improving application performance—hardware
specialization. Developers now have access to a near limitless
range of computing devices, establishing what some refer to as
a computing continuum [1, 2]. However, specialization leads
to distribution, and thus the most suitable hardware for a
computation is likely to be physically remote. Fortunately,
corresponding increases in network performance [3] make it
now possible to distribute workloads to remote computers at
almost the speed of light.

Effective task distribution in such heterogeneous, hyper-
connected environments requires two distinct but complemen-
tary functionalities: 1) mechanisms for easy, reliable, and ef-
ficient task execution on remote and heterogeneous resources;
and 2) the ability to rapidly, effectively, and automatically
determine good available resources. The first objective is
met, at least in part, by modern function-as-a-service (FaaS)
platforms [4] that provide convenient abstractions for exe-
cuting function calls on remote computers without regard

to underlying physical and virtual infrastructure. The second
objective, however, becomes increasingly complex as devices
become more heterogeneous. Additionally, resource selection
is not simply a matter of choosing the fastest or closest device.
Instead, the true cost of running a particular application on
a specific resource can depend on many factors, including
the performance of the application on that resource, time to
provision and configure the resource, the time to transfer data
to that resource, and the reliability of the resource.

Here we present Distributed Execution of Lambdas using
Trade-off Analysis (Delta), a service for scheduling function
executions across heterogeneous, distributed FaaS resources
and thus enabling fluid computation from edge devices to
clouds and supercomputers. Delta is designed to work with
existing FaaS platforms and in particular those that can be
deployed on arbitrary computing resources. It serves as a
high-level scheduler able to profile and predict function per-
formance using a set of extensible predictors, manage data
movement across connected resources, and route function ex-
ecutions to resources based on extensible scheduling policies.

We implemented a Delta prototype using the funcX FaaS
platform [5] to manage function execution on remote end-
points and using Globus [6] to manage data transfers between
endpoints. We developed machine learning predictors that
estimate function runtime on heterogeneous hardware, data
transfer time between endpoints, and cold start time (e.g.,
node acquisition, container instantiation, and Python package
loading). We combined these predictors into a single model
for determining the expected execution time of a function on
a given endpoint. We subsequently used this model to develop
scheduling strategies that aim to select the fastest endpoint
for a task and to minimize the expected execution time of
individual tasks. We evaluate Delta on a testbed with 11
endpoints including Raspberry Pis, desktops, and Amazon and
Chameleon [7] cloud instances. Experiments with benchmark
workloads show that Delta can quickly learn tradeoffs between
functions and resources, and that its estimated execution
scheduling strategy can reduce makespan by more than a factor
of five when compared to a round robin approach and by more
than double when compared to a strategy that selects the fastest
endpoint for a function without considering other factors.

The rest of this paper is as follows. Section II introduces

1

our research questions and the distributed function scheduling
problem. Section III describes the Delta architecture, and
Section IV evaluates Delta’s performance with benchmark
workloads on a heterogeneous testbed. Section V reviews re-
lated work. Finally, Section VI summarizes our contributions.

II. CHALLENGES AND PROBLEM FORMULATION

We discuss challenges associated with scheduling functions
for execution across diverse and distributed resources, formal-
ize the problem, describe how we model function execution
time, and present assumptions we make.

A. Challenges

Choosing where to execute a function in a heterogeneous
and distributed system depends on myriad factors ranging
from the performance of a particular function on a partic-
ular resource through to the time to provision its execution
environment and transfer input data to that environment. We
describe the factors we consider here.

1) Function Runtime: Different applications perform dif-
ferently on different resources, as illustrated in Fig. 1, which
shows the performance achieved on seven resource types for
three applications: a parallel counter (ParCount), a matrix mul-
tiplication (MatMul), and an I/O heavy application (FileIO).

Fig. 1: Relative throughputs (tasks/sec) for three tasks on the resource types
of Table I, with values normalized to the maximum observed on any resource.

2) Data Transfer: A large contributor to execution duration
is the time required to move task-execution information to a
remote endpoint. This involves not only the latency of com-
municating with the endpoint, but also the cost of transferring
data in cases where the function needs to act upon large input
data. Data transfer rates can vary enormously, depending on
endpoint capabilities and available network bandwidth.

3) Cold Starts: The cold start problem is a well-known and
well-documented issue in FaaS literature [5, 8, 9], and repre-
sents an important scheduling difference between serverless
computing and conventional HPC. Broadly, the problem is
that the first invocation of a function typically incurs the time
to provision and configure infrastructure, which may include
time to request resources, configure virtual machines, deploy
containers, and load function dependencies. Contemporary
FaaS systems have taken varied approaches to this problem,
from keeping “pre-warmed” containers [9–11] to applying
optimized container technologies [8]. While prior work has

focused primarily on cloud environments, we focus on the
more general case where resources include both cloud and
HPC resources. Acquisition of nodes on HPC resources is
typically the most significant (and variable) factor.

B. Problem Formulation

We define an endpoint as a FaaS-enabled computing re-
source where users can execute functions: for example, a cloud
instance, supercomputer, desktop, or edge device.

We have a heterogeneous set of n such endpoints,
{EP1, . . . ,EPn}. We receive a stream of tasks of the form
(f, x, data) where f is a function, data is a list of files (on the
requesting machine or elsewhere) needed by the computation,
and x is function input (e.g., paths to data). Neither the timing
nor nature of these tasks is known ahead of time. We must
decide where to send each task when it is received.

1) Objective: We aim to select an endpoint for each task as
it is received in order to minimize overall time-to-completion.
(Other objectives that could be considered include minimizing
data movement, maximizing resource utilization).

2) Modeling the Continuum: We decompose the time taken
to execute a task f(x, data) on an endpoint EP into:

• Scheduling overhead (tsched): Time to make a scheduling
decision and to queue the task for execution.

• Cold-start latency (tcold(EP, f)): Time to allocate a node,
start a container, and load package dependencies for f, if
the endpoint is not already warm.

• Pending-tasks delay (tprev(EP)): Time for all previously
scheduled tasks on EP to finish. (As noted below, we
assume FIFO execution on an endpoint.)

• Function transfer time (ttrans(EP, f, x)): Time to transfer
f and x from submit side to EP.

• Data transfer time (ttrans(EP, data)): Time to transfer
each input file in data from its source to EP.

• Runtime (trun(EP, f, x, data)): Time for EP to run f on
input x and data, producing output res.

• Result transfer time (ttrans(EP, res)): Time to transfer res
from EP to submit site.

Thus, we determine the endpoint EPi that minimizes a
function’s expected execution time (EET) as follows:

argmin
1≤i≤n

 tsched + tcold(EPi, f) + tprev(EPi) +
ttrans(EPi, data) + ttrans(EPi, f, x) +
trun(EPi, f, x, data) + ttrans(EPi, res)

 (1)

3) Assumptions: We make the following assumptions to
restrict the scope of the problem. While unrealistic, they allow
us to explore aspects of the general case.

(A1) trun(EP, f, x, data) is constant for a particular EP, f, x,
and data.

(A2) The time to schedule a task, tsched, is a constant.
(A3) The time to communicate a function to, and results from,

different endpoints, ttrans(EPi, f, x) + ttrans(EPi, res), is
constant for all EP, f, x, res. (These times were small
relative to other costs in the studies reported here.)

(A4) Each endpoint runs one task at a time, in FIFO order.

2

(A5) Each task runs on a single endpoint (i.e., no task can be
distributed over multiple endpoints).

(A6) There are no inter-task execution dependencies managed
by Delta (these can occur freely from within a function).

(A7) We seek only to minimize task time-to-completion.

III. DELTA DESIGN AND IMPLEMENTATION

Delta is a service that provides function profiling, predic-
tion, and scheduling over existing FaaS systems: see Fig. 2.
Users can use Delta to manage task execution across one
or more function-serving endpoints. To do so, they use the
Delta Python client to invoke tasks directly from within a
programming environment, as illustrated in Listing 1.

Fig. 2: Delta architecture, showing components of the scheduling service and
the communications required to execute tasks. (1) Submit tasks and fetch
results; (2) and (3) supply endpoint and task information to predictors; (4)
regularly provide endpoint status; (5) distribute tasks across endpoints; (6)
schedule and track data transfers; (7) regularly monitor each task’s status.

Delta follows a standard FaaS model in which users register
a function before invocation, providing self-contained function
code, a clearly stated function signature, and any dependen-
cies. Delta wraps the function and registers it in turn with
the associated FaaS platform. When a Delta client requests
that a task f(x, data) (i.e., a function plus arguments and
data) be executed, Delta selects an endpoint, manages data
transfers to that endpoint, waits for transfers to complete, and
then forwards the request to the FaaS service to execute the
task on that endpoint. Users can subsequently retrieve results
asynchronously via Delta.

A. Core Components

The Delta service maintains various components to enable
task scheduling and performance prediction, task tracking,
data transfers, and resource monitoring. We describe these
components in the following subsections.

1) Performance Predictors and Task Scheduling: Delta
includes methods for training predictive models on historical
data to estimate the various aspects of function execution
time listed in Section II-B. Delta’s TaskScheduler uses

from delta import DeltaClient

Define function to be scheduled via Delta
def classify(img):

import tensorflow as tf
...
return model.predict(img)

Create client and register function
client = DeltaClient()
func_id = client.register_function(classify)

Request task to run function on image
img = ...
task_id = client.run(img, function_id=func_id)

Retrieve task result
res = client.get_result(task_id, block=True)

Listing 1: Using Delta SDK to register and invoke a function.

trained predictors to determine the most appropriate endpoint
for a task’s execution. When given an incoming task t =
(f, x, data), it applies a scheduling strategy to determine which
endpoint should be used, retrieving predictions from predictors
as needed. The TaskScheduler is extensible, allowing for
arbitrary predictors and scheduling strategies.

2) Task Tracking: We assume that function execution end-
points execute tasks in FIFO order. An essential metric for
execution time prediction is an estimate of when all tasks
scheduled on each endpoint will finish running—the end-
point’s pending time. For this, the TaskTracker maintains
a FIFO queue of scheduled tasks for each endpoint that it
updates whenever a new task is sent to the endpoint.

3) Data Transfer: The TransferManager is respon-
sible for managing data transfers between endpoints. If
input data is not available on the selected endpoint, the
TransferManager starts data transfer(s) between the
source(s) and the destination endpoint, tracks transfer status,
and dispatches the task to the endpoint only when it is notified
that the transfer has completed.

4) Resource Monitoring: The EndpointMonitor com-
ponent tracks the status of each execution endpoint. It relies
on a heartbeat message from the endpoint to the Delta service,
which provide information about the endpoint’s state, available
capacity, queued workload, and utilization of its resources.

B. External Services

Delta leverages funcX [5] for function execution and
Globus [6] for data transfers.

The funcX federated and distributed FaaS platform allows
users to register any computing resource as an endpoint on
which they can then execute functions via the funcX service.
funcX is an attractive choice for an execution fabric upon
which Delta can be implemented. All aspects of function
execution happen via the FuncXClient. Functions are regis-
tered by the FuncXClient and assigned a function-id by the

3

funcX service. Functions can then be executed, by specifying
the function-id, endpoint-id, and any input parameters through
the FuncXClient. The resulting task is assigned a unique
task-id via which users can monitor task status and retrieve
the results asynchronously.

A funcX endpoint uses Parsl [12] to provision and manage
compute resources. Each endpoint hosts a manager for re-
ceiving incoming tasks from the funcX service. The endpoint
manages a collection of workers deployed on the various nodes
available for execution. For example, in an HPC setting, nodes
are provisioned via the HPC scheduler, while in a cloud setting
nodes are provisioned via the cloud API. The manager routes
tasks to registered workers for execution. When the function
completes, serialized results are returned to the funcX service
and stored in a task database, awaiting a pull from the client.

Globus [13] provides managed high-performance data
transfers between remote endpoints. It implements a third-
party transfer model via which a user, or in this case the
Delta service, can request a data transfer between pairs of data
transfer endpoints. (More than 20,000 are active, and others
can easily be deployed.) The cloud service offers a REST API
for programmatic management of transfers.

Globus uses the GridFTP protocol for high-performance
data transfer, and implements advanced features including
parallel data streams for performance, automated integrity
validation via checksums, automated restarts in the case of
errors and file corruption, and a comprehensive security model
that enables authentication at both source and destination as
well as encryption of the data channel.

C. Function Execution
When a user registers a function, Delta wraps it with Delta-

specific code to allow Delta to track task execution. Delta then
registers the augmented function with funcX.

When making a task request, the user need not specify
an endpoint for execution, as Delta determines this before
sending the request to funcX. The user may optionally provide
data specifications and the source Globus endpoint(s), which
are included as part of the function execution request, and
data will be transferred prior to function execution by the
Delta service. The Delta service tracks pending tasks via a
background TaskWatchdog thread which regularly polls the
funcX service to inquire about the status of each pending task.
This polling enables Delta to receive results as soon as they
are ready and allows for more accurate runtime predictions.

Delta provides for resiliency by generating backup tasks
when the EndpointMonitor detects that an endpoint has
failed, or if a task takes significantly longer than expected. A
backup task is always sent to an endpoint other than those
chosen previously for a task. Multiple backups can be sent,
up to a configurable max_backups limit. Delta does not
send backup tasks during the exploration phase, as runtime
predictions are unlikely to be accurate.

D. Endpoint Monitor Implementation
The Delta EndpointMonitor is responsible for deter-

mining the current state of an endpoint and reports infor-

mation such as task queue depth, worker status, and re-
source utilization. This information allows Delta’s predic-
tors to estimate wait time for specific endpoints. For ex-
ample, the EndpointMonitor can track if warm nodes
are available by checking if the funcX endpoint has active
managers and workers. If no active managers are reported,
the EndpointMonitor reports the endpoint as cold. This
fact is used for subsequent scheduling decisions. If a cold
endpoint is chosen for execution, Delta marks it as warming,
and once it regains an active manager, it is marked as warm.
The EndpointMonitor also keeps track of which packages
have been imported on the endpoint worker’s environment.
The required packages for a function are determined at the
time of function registration by the Delta service.

E. Predictors

To validate the Delta architecture we implemented several
proof-of-principle predictors.

A runtime predictor uses timings (f, xi, datai, trun(EP,
f, xi, datai)) from previous runs of f on EP to estimate
trun(EP, f, x, data). As function runtime often depends heavily
on its inputs, we implement for the studies reported here an
input size predictor that uses online polynomial regression to
fit observed {input-size, runtime} pairs for each function. To
reduce computational cost, we group endpoints with similar
execution capabilities (e.g., CPU architecture, memory and
disk capabilities) and create runtime models for these groups.
We rely on our previous works [14, 15] to provide the neces-
sary predictive abilities as this task is difficult and crucial.

Transfer predictors estimate the data transfer time between
two locations. As with runtime predictors, we group endpoints
by the features that affect transfer times, namely physical
location, network connectivity, system memory, and network
hardware. We can then measure for each transfer group how
transfer rates scale with data size when explicit data scaling
information is available through the function declaration.

Fig. 3 shows that transfer rates vary greatly with source
and destination. Transfers between two desktop computers on
a local network are much faster than transfers from a local
network to the AWS instance; on the other hand, transfers
between a commercial and research cloud are incredibly fast.

We apply simple regression models to predict the relation
between size and transfer rate for each pair of source and
destination transfer groups. Our model predictions are shown
in the dotted lines in Fig. 3. We see that we can predict transfer
times in our testbed reasonably well.

Cold start predictors estimate one-off startup costs. As
mentioned in Section II-A3, we treat the cold start process
as a sequence of three consecutive steps: node acquisition,
container instantiation, and package loading.

Node acquisition times are frequently both long and hard
to predict, particularly on HPC clusters where queue times
can depend on many factors—capacity, resources requested,
and job-scheduling policies—and differ by several orders of
magnitude [16]. One solution is to maintain a collection of
warm nodes at all times. For our work, we assume that our

4

Fig. 3: Data-transfer rates between Globus endpoints in our testbed (see
Section IV-A): specifically, from endpoints avg (a desktop on the departmental
network) and many (at Argonne National Laboratory) to those endpoints and
also fast (another department desktop), aws (an AWS instance in Virginia),
and midway (a cluster in UChicago’s Research Computing Center). The
circles represent medians of measured values and our model’s predictions
are shown by the dotted lines.

endpoints either need not wait for node allocation (e.g., they
are dedicated edge devices or desktop computers) or, if in HPC
clusters, they are already running on warm nodes.

Fig. 4: Import latencies for four common Python packages on different
devices. Download and installation latencies vary similarly.

Dependency loading involves downloading, installing, and
importing packages. Fig. 4 shows the times to import common
Python packages on the different devices in our testbed.
These are easily predictable quantities, so accounting for
these package-loading latencies is a matter of calculating the
tradeoff between matching installed packages with application
dependencies and incurring package loading overheads where
a dependency is missing.

F. Transfer Manager Implementation

A user specifies, when registering a funcX endpoint, its
associated Globus endpoint. When a new task is submitted to
the Delta service with a list of files required for execution, the
TransferManager uses the Globus API (with delegated
Globus Auth tokens for the requesting user) to orchestrate
the transfer. The TransferManager monitors the transfer
and dispatches the task to the endpoint when the transfer has
completed. This just-in-time submission allows the endpoint
to execute other tasks while waiting for transfer overheads.

G. Scheduling

We evaluate three scheduling algorithms in this paper:
• round-robin routes each task to the next endpoint in

a list of endpoints.
• fastest-endpoint routes each task to the endpoint

for which our runtime predictor yields the shortest esti-
mated function runtime, trun(EP, f, x, data).

• smallest-EET routes each task to an endpoint selected
according to Equation 1.

Resource selection in a heterogeneous environment requires
knowledge of how different tasks will perform on differ-
ent machines. If such knowledge is not initially available,
then exploratory runs must be performed: a classic explore-
exploit tradeoff [17]. We have explored such tradeoffs else-
where [18]. Here, we implement a first exploration phase in
fastest-endpoint and smallest-EET in which one
task is sent to each of the seven endpoint groups to collect
performance data, after which tasks are dispatched based on
predictions from models trained with those data.

IV. EVALUATION

We use micro experiments to evaluate to what extent
the various Delta components (e.g., ability to learn function
runtime and data transfer time) work for holistic computing
ecosystems, and macro experiments to evaluate to what
extent Delta, as a whole, yields satisfactory performance when
put under load with realistic workloads.

A. Experimental Setting

We performed experiments on a heterogeneous testbed with
three Raspberry Pis, four nodes in the Chameleon research
cloud (two CPU-optimized, two GPU-optimized), an AWS
EC2 instance, and three desktop computers: see Table I.

For both micro and macro experiments, we used four
benchmark applications, each with a parameter n (and for
MatMul, also a parameter m) that can be set in an experiment:
1) Counter, which uses a single thread to increment an integer
value n times; 2) ParCount (parallel counter), a happily
parallel computation that runs c instances of Counter, one
on each of a resource’s c cores, each counting to n/c; 3)
MatMul, which uses TensorFlow to perform m multiplications
of different n× n matrices; and 4) FileIO, which writes and
reads n bytes to/from disk.

B. Micro Experiments

We first present three experiments to highlight different
features of Delta and verify that Delta can transparently route
tasks to different endpoints across the computing continuum.
The first experiment demonstrates that, when asked to run
a workload that favors a particular endpoint, Delta quickly
learns to send this workload to this endpoint. The second ex-
periment demonstrates that, when tasks involve data transfers,
Delta accounts for the cost of data movement, thus making
smarter decisions than baseline strategies. The third experi-
ment demonstrates that, when faced with endpoint failures and
slowdowns, Delta quickly recovers and completes tasks.

5

TABLE I: THE HETEROGENEOUS TESTBED USED FOR EXPERIMENTS INCLUDED 11 DEVICES.

Description Hardware Name Count

Edge device (Raspberry Pi 3B) ARM Cortex-A53, 4-core, 1GB pi 3
Slow desktop (UChicago CS) Intel Core i7-3770, 8-core, 8GB slow 1

Average desktop (UChicago CS) Intel Core i7-6700, 8-core, 8GB avg 1
Fast desktop (UChicago CS) Intel Core i7-8700, 12-core, 16GB fast 1

Cloud CPU (AWS EC2 T3a.medium) AMD EPYC 7571, 2-core, 4GB aws 1
Manycore CPU (Chameleon) Intel Xeon E5-2670, 48-core, 125GB many 2

GPU node (Chameleon) Nvidia Quadro RTX 6000 GPU (Intel Xeon Gold 6126, 48-core, 187GB) gpu 2

1) Learning Under a Small Load: A simple situation in
which to observe the benefits of heterogeneity is when tasks
arrive infrequently enough that the only factor affecting EET is
the function’s runtime, trun. Fig. 5 shows the execution times
observed when 100 MatMul tasks, each with m = 50 and
n = 1000, arrive at 0.5 Hz: an approximation to an application
that regularly requests a neural-network inference.

Fig. 5: Learning function performance behavior with different strategies under
a small load. Note different scale for round-robin.

Both the fastest-endpoint and smallest-EET
strategies use the first few tasks to explore the different
endpoint groups. Both strategies then favor the most suitable
endpoints for MatMul tasks, which unsurprisingly are the
GPU endpoints. The naive round-robin strategy performs
noticeably worse, and as the slowest endpoints cannot keep up
with the arrival rate of tasks, round-robin execution times
become increasingly slow. While the fastest-endpoint
strategy performs optimally in this simple case, we see below
that it does not in others.

2) Data Transfer Trade-offs: To evaluate the effects of
data transfers, we conducted an experiment involving a se-
ries of Counter tasks, each with n selected randomly from
{224, 226, 228}, and with each also specified to require two
1KB files located on the avg endpoint. As Delta does not
cache files, both files must be transferred once for each task
that is run on an endpoint other than avg; as this requires
a request to the cloud-hosted Globus service, there is a non-
trivial cost. Thus, for every execution, the Delta service must
consider both execution and transfer times to predict the lowest
overall EET. We did not use the three pi endpoints in this
experiment, as they lacked Globus support; thus, we had eight
endpoints and six endpoint groups. After 18 exploration tasks
(one per size for each endpoint group) used by Delta to learn

function performance behavior, we requested a total of 100
tasks at 0.5 Hz.

Fig. 6: Accounting for data transfer cost as part of function execution. The
workload is 100 Counter tasks; the figure distinguishes between runtime costs,
data transfer costs, and all other costs, with the lattermost including time spent
waiting for resources.

Fig. 6 shows that the round-robin strategy naively
cycles through the available endpoints, incurring a data transfer
cost for every endpoint except the one that holds the re-
quired files. The fastest-endpoint strategy also ignores
transfer costs and thus simply chooses the endpoint that has
historically run the task the fastest. Since the files were located
on the avg endpoint, which has slower CPU cores than three
of the other endpoints, the fastest-endpoint strategy
always chooses to offload the computation to a different
endpoint, incurring non-negligible transfer costs. Finally, the
smallest-EET strategy, which considers both transfer costs
and runtime costs, only offloads the computation to a different
endpoint (incurring transfer costs) some of the time. Closer
analysis of the figure reveals the following pattern: the avg
endpoint was chosen for execution several times, as indicated
by the lack of transfer cost, until enough pending tasks
accumulated (shown by the growing size of the blue bars,
which include wait time), at which point it was best to offload
the next task to a different endpoint and incur transfer costs.

3) Tolerating Failures and Slowdowns: Here a stream of
MatMul tasks with m = 50 and n = 2500 arrives at 0.33 Hz.
To simulate a failure, we removed the gpu-1 endpoint after
the 30th task and restarted it after the 60th task.

Fig. 7 shows how after a first exploratory phase, execution
times are consistently small. Since the period from task 30 to
task 60 is small, Delta does not observe a missed heartbeat
from the gpu-1 endpoint. However, it does see delays,
and when it has not received results in more than twice

6

the expected execution time, it sends backup tasks to other
(slower) endpoints. After task 60, gpu-1 resumes responding
to task requests as expected and so execution returns to normal.

Fig. 7: Tolerating failure of endpoints and slowdown of tasks with automatic
delay-detection and backup tasks.

C. Macro Experiments

These experiments evaluate Delta’s performance when sub-
jected to high loads with tasks being scheduled in large batches
(frequent on FaaS platforms). The first experiment shows how
throughput and time-to-completion vary when many copies
of the same task are run. The second shows how input size
must be taken into account when making scheduling decisions.
The third experiment shows that Delta performs well when
subjected to multiple task types at the same time.

1) Overloading Tasks: To test if Delta’s scheduling system
can distribute tasks across endpoints in a way that maximizes
task throughput while maintaining low execution times, we
ran 500 ParCount tasks with n = 108, in batches of 50.

Fig. 8 shows that the round-robin strategy strug-
gles to keep the average execution time of tasks low,
since it simply cycles through endpoints and inevitably
hits slowdowns when it sends tasks to the slower end-
points. While the fastest-endpoint strategy provides
a slightly better task throughput than round-robin, its
median task execution time is, in fact, higher than that of
round-robin. This is because whereas the round-robin
strategy naively balances load amongst the different endpoints,
the fastest-endpoint strategy sends all tasks to the
endpoint which provides the fastest runtime for the function
in concern. As tasks are executed FIFO, this leads to tasks
quickly piling up on this endpoint, which explains the higher
median time-to-completion. The smallest-EET strategy
does not suffer from such ailments since it takes into account
pending-task predictions for each endpoint. We see that, after
the first batch (in which it explores all endpoint groups),
the smallest-EET strategy consistently keeps the time-to-
completion for tasks low and demonstrates a task throughput
that is several times higher than the other strategies.

Given a goal of explainability, we repeated the experiment
above but with the simple Counter function with n = 108.
Fig. 9 shows the distribution of tasks per endpoint produced
by the smallest-EET strategy in this case. The figure also
shows the relative speeds with which each endpoint can run
this function—this is essentially just a measure of CPU clock-
speed. Ignoring other execution costs, the optimal distribution

Fig. 8: Overloading Delta with ParCount tasks shows that, compared to
baseline strategies, EET prediction significantly reduces time-to-completion
and boosts throughput. The top figure reports the throughput of each batch.
The bottom figure reports the box plot of task time-to-completion within each
batch for each strategy. The box shows the first and last quartile; whiskers
are shown at 1.5 interquartile range.

for this task should match the relative speeds of the different
endpoints. Fig. 9 demonstrates that the smallest-EET
strategy achieves a close approximation of this distribution,
suggesting that its scheduling decisions are close to optimal.

Fig. 9: In red, fraction of tasks sent to each endpoint when Delta is overloaded
with Counter tasks; in black, relative endpoint speed for a Counter function.

2) Input Size Trade-offs: The previous experiment demon-
strated how tasks should be scheduled across heterogeneous
endpoints when all tasks are uniform. We now consider the
case where tasks are non-uniform, specifically, when different
function inputs result in different runtimes: a common occur-
rence seen in many workloads. We use Counter tasks with
n ∈ {222, 225, 228} and schedule a total of 600 tasks, divided
into 10 batches of 60 tasks each. Each batch consisted of 20
tasks of each of the three input sizes, randomly ordered.

The results in Fig. 10 show that the round-robin strat-
egy, by ignoring all features of incoming tasks and avail-
able endpoints, performs poorly and yields low throughput.
The variance in the observed throughput between batches
is because of the randomness in the order of tasks. The
fastest-endpoint strategy, similar to the previous ex-
periment, overwhelms the one endpoint which has the fastest

7

Fig. 10: Running tasks with multiple input sizes shows that treating different
input sizes differently yields increases in performance. When under load,
it is beneficial to send smaller tasks to slower endpoints, even Raspberry
Pis. The top figure reports throughput when the fastest-endpoint and
smallest-EET consider (“with-size”) and do not consider input size in
runtime predictions. The bottom figures show how the smallest-EET
strategy allocates different sizes of tasks to endpoints.

runtime for the function. This is because this fastest endpoint,
unsurprisingly, is the best for each of the three sizes. The figure
also shows how the smallest-EET strategy performs, with
and without taking into account input size in its runtime pre-
dictions. Without considering input size, the smallest-EET
strategy has a high variance in the observed throughput. This
is because it indiscriminately sends tasks to where the function
has been performing well recently. Occasionally, it sends tasks
to the correct endpoints but, other times, it sends tasks to
endpoints which have previously offered short runtimes due
to the fact they were allocated tasks with small input sizes.
When the smallest-EET strategy takes into account task
sizes, its throughput remains consistently high.

Fig. 10 also shows how tasks are allocated to endpoints
under the smallest-EET strategy. We see that tasks are
distributed across the endpoints: small tasks are sent to the
slowest endpoints, medium tasks to the mediocre endpoints,
and the largest tasks to the fastest endpoints. We glean from
this experiment that when put under load with tasks of
different sizes, we can and must take advantage of even the
slowest endpoints for improved performance.

3) Multiple Heterogeneous Tasks: This final experiment
seeks to emulate real-world FaaS behavior via a workload
involving three functions and, for each, three problem sizes:
MatMul with m = 20 and n ∈ {28, 29, 210}; ParCount for
n ∈ {224, 226, 228}; and FileI/O for n ∈ {220, 222, 224}.
We assembled 111 of each of these nine {function, size}
pairs, for a total of 999 tasks. These tasks were randomly
shuffled and then dispatched in batches of 100, with each batch
starting only when the previous batch had completed. Fig. 11

shows the throughput observed when using different schedul-
ing strategies. We used the input size predictor described in
Section III-E in all cases.

Fig. 11: Throughput achieved by different scheduling strategies for the
Multiple Heterogeneous Tasks experiment.

Unsurprisingly, round-robin does not distribute tasks ef-
ficiently to different endpoints. fastest-endpoint learns
to send each function to the endpoint on which it runs fastest,
but as it fails to account for any other factors, it shows high
variance in throughput, getting lucky in some batches and
overwhelming a few endpoints in others. smallest-EET
quickly learns to allocate tasks to suitable endpoints and
maintains a consistently high throughput. Fig. 12 shows how
each strategy allocates tasks to endpoints. round-robin
of course distributes tasks evenly across the endpoints (the
slightly uneven peaks are due to the random order of tasks
submitted). fastest-endpoint overwhelms the handful
of endpoints that it determines to be the fastest for each task
type, sending most FileIO tasks to fast-desktop (fastest
CPU and fast disk) and most MatMul tasks to the GPUs. On
the other hand, the distribution observed for smallest-EET
is more nuanced, depending on both task types and sizes.
The smallest MatMul tasks are sent almost exclusively to the
Raspberry Pis; longer-running task are sent to the GPU and
manycore endpoints, where Tensorflow can exploit massive
parallelism. Similarly, larger ParCount tasks are sent to the
manycore endpoints and larger FileIO tasks to endpoints
with fast disks and fast CPUs, whereas the smaller tasks are
distributed amongst slower endpoints.

Fig. 12: Distribution of tasks across endpoints for the Multiple Heterogeneous
Tasks experiment. Note different scale for fastest-endpoint.

8

TABLE II: STATISTICS FOR MULTIPLE HETEROGENEOUS TASKS EXPERIMENT: AVERAGE COMPLETION TIME FOR EACH TASK TYPE, AND AVERAGE
MAKESPAN BOTH ACROSS ACROSS ALL BATCHES AND ACROSS ONLY NON-EXPLORATION PHASES. ALL TIMES ARE IN SECONDS.

Strategy ParCount MatMul FileI/O Avg
Makespan

Avg Makespan
Post-ExplorationSmall Medium Large Small Medium Large Small Medium Large

Round-Robin 28.7 30.2 41.8 30.6 26.8 32.6 30.1 32.6 42.4 154.2 159.4
Fastest-Endpoint 19.4 34.6 31.6 20.7 19.5 19.9 20.2 34.2 40.3 67.9 62.6

Smallest-EET 23.4 24.9 23.9 25.3 23.7 24.6 24.3 24.4 27.0 38.7 31.0

Table II shows the time to complete each task as an average
across batches. It also shows the average makespan per batch,
both across all batches and when ignoring batches in the
exploratory phase. We see that smallest-EET achieves the
fastest average completion time for only four of the nine
{function, size} pairs, while fastest-endpoint gives
the fastest average completion time for the other five. This
result is not surprising as smallest-EET takes a more
holistic view and spreads workload across the testbed. This
distribution is further highlighted by the fact that the av-
erage makespan for smallest-EET is less than half that
achieved as fastest-endpoint and five times better than
round-robin, when the exploration phase is excluded.

These results underscore our claim that scheduling task
executions in a heterogeneous environment is a non-trivial
undertaking that requires modeling the many complexities
involved in running a computation remotely—and that doing
so can yield considerable benefits.

V. RELATED WORK

This work builds upon decades of foundational research in
distributed computing, including in shared clusters, grid [19]
and peer-to-peer [20] computing, cloud computing, schedul-
ing [21], and programming heterogeneous devices [22].

Federated computing: The desire to federate disparate
computing resources is not new and has motivated the devel-
opment of grid [19] and cloud computing. Seminal work fo-
cused here on developing the foundation for remote, federated
computing with middleware to support job submission, data
transfer, and federated security. Cloud computing extended this
foundation, providing virtualized access to resources hosted
by a single provider. Cloud platforms now offer hundreds of
different instance types, and increasingly specialized hardware
such as cloud TPUs. In the context of grid and cloud comput-
ing, there has been widespread investigation of heuristic-based
strategies for heterogeneous resources, including completion
time minimization [21], greedy scheduling through profiling
and execution histories [23, 24], data-computation schedul-
ing [25], and use of computational economies [26]. Our ap-
proach here builds on this prior work, adapts it to increasingly
heterogeneous and distributed computing environments, and
addresses scheduling of lightweight programming functions.

Workflows: Considerable research has focused on schedul-
ing workflows on distributed resources. While workflows have
traditionally focused on orchestrating jobs, for example using
Pegasus [27], new workflow models, such as Parsl [12],
orchestrate collections of loosely-coupled functions. With the

rapid adoption of machine learning, there are also systems,
such as DLHub [28, 29], incorporating inferences of machine
learning models into workflows. Researchers have explored
various approaches for scheduling workflows (e.g., scientific
and big data processing MapReduce) in grid [30, 31] and
cloud [32–35] environments. Unlike these papers that focused
on orchestrating and scheduling workflows on a single en-
vironment, we propose a model for function-level execution
across heterogeneous and distributed computing environments,
which makes a first attempt towards the computing continuum.

Function-as-a-service: Public cloud provider FaaS capa-
bilities [10, 36, 37] are deployed on homogeneous cloud in-
frastructure, with the exception of Amazon Greengrass that
can be deployed locally for IoT use cases [38]. Open-source
FaaS solutions, such as OpenLambda [39], Apache Open-
whisk [11], and Kubeless [40] enable FaaS deployments on
local resources, often using Kubernetes clusters for container
provisioning. Our approaches could be applied to these various
open-source FaaS deployments, and perhaps even cloud FaaS
platforms if they expose access to heterogeneous resources in
the future. Recent FaaS research has focused on challenges
associated with centralized deployments and on reducing
cold-start times [8, 9]. For example, Azure shows cold-start
latencies of up to 3500ms, whereas AWS uses optimized
Firecracker virtualization [41], and likely maintains warm
virtual machines, to hide some cold-start costs.

FaaS scheduling: While we are not aware of any prior
work on building a complete model of function schedul-
ing, optimizing different aspects of function execution has
been a major focus in recent FaaS research. FnSched [42]
seeks to maximize utilization while meeting service-level
objectives (SLOs) by regulating function resource usage and
scaling utilization of resources based on load. Other work
on meeting SLOs in heterogeneous computing environments
includes a probabilistic task pruning method [43], which uses
a function’s execution history to predict whether a task will
meet its SLO. Wukong implements a decentralized model for
scheduling functions expressed in a workflow DAG on FaaS
platforms [44]. Additionally, Maheswaran et al. [45] defined
significant groundwork in heterogeneous task allocation.

VI. CONCLUSION AND FUTURE WORK

We have presented Delta, a system unifying heterogeneous
computing environments and managing the flow of diverse
function execution requests to endpoints with different connec-
tivity and computational capabilities. Delta uses dynamically

9

updated predictive models to determine the best destination
for a particular function at a particular time.

Delta learns to predict not only how fast different functions
execute across the computing environment, but also general-
izeable execution characteristics of that environment.

We showed that leveraging Delta to execute a workload in
a heterogeneous environment can more than halve makespan
when compared to simply selecting the fastest available com-
pute resources, and reduce makespan by a factor of five when
compared to a round robin strategy.

We are now working to refine this foundation and frame-
work in several directions, namely, to understand the specific
requirements of scientific use cases and enhancing Delta to
consider diverse and complex notions of “cost,” in terms of
both monetary and time values. To account for complexities
in real world considerations of computational tradeoffs, we
will explore using learned embeddings of cost and execution
characteristics. We also plan on a performance scaling study
of Delta in diverse computing environments.

ACKNOWLEDGMENT

We thank Alex Foster, Troy Hu, and Wendy Li for their
efforts exploring trade-offs in the computing continuum. This
research was supported in part by DOE contract DE-AC02-
06CH11357 and by NSF grants 1816611, 2004894, and
1550588. We used computing facilities provided by NSF
Chameleon [7] and the UChicago Research Computing Center.

REFERENCES

[1] D. Balouek-Thomert et al., “Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven workflows,” Intl J. High Per-
formance Computing Applications, vol. 33, no. 6, pp. 1159–1174, 2019.

[2] P. Beckman et al., “Harnessing the computing continuum for program-
ming our world,” in Fog Computing: Theory and Practice. Wiley Online
Library, 2020, pp. 215–230.

[3] G. P. Agrawal, “Optical communication: Its history and recent progress,”
in Optics in Our Time, 2016, pp. 177–199.

[4] E. Jonas et al., “Cloud programming simplified: A Berkeley view on
serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[5] R. Chard et al., “funcX: A federated function serving fabric for science,”
in 29th Intl Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2020.

[6] K. Chard et al., “Efficient and secure transfer, synchronization, and
sharing of big data,” IEEE Cloud Computing, vol. 1, no. 3, 2014.

[7] K. Keahey et al., “Lessons learned from the Chameleon testbed,” in
USENIX Annual Technical Conference. USENIX Association, 2020.

[8] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-
optimized containers,” in USENIX Annual Technical Conference, 2018.

[9] L. Wang et al., “Peeking behind the curtains of serverless platforms,”
in USENIX Annual Technical Conference, 2018, pp. 133–146.

[10] “Amazon Lambda,” aws.amazon.com/lambda/, Seen: 10/2020.
[11] “Apache OpenWhisk.” http://openwhisk.apache.org/, Seen: 10/2020.
[12] Y. Babuji et al., “Parsl: Pervasive parallel programming in Python,”

in 28th Intl Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 25–36.

[13] B. Allen et al., “Software as a service for data scientists,” CACM, vol. 55,
no. 2, pp. 81–88, 2012.

[14] M. Baughman et al., “Profiling and predicting application performance
on the cloud,” in 11th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2018.

[15] R. Chard et al., “Cost-aware cloud profiling, prediction, and provisioning
as a service,” IEEE Cloud Computing, vol. 4, no. 4, pp. 48–59, 2017.

[16] W. Smith et al., “Predicting application run times with historical
information,” J. Parallel & Distributed Computing, vol. 64, no. 9, 2004.

[17] P. Maes et al., “Explore/exploit strategies in autonomy,” in 4th Intl Conf.
on Simulation of Adaptive Behavior, vol. 4, 1996, pp. 325–332.

[18] C. Wu et al., “ParaOpt: Automated application parameterization and
optimization for the cloud,” in Intl Conference on Cloud Computing
Technology and Science. IEEE, 2019, pp. 255–262.

[19] I. Foster et al., “The anatomy of the grid: Enabling scalable virtual
organizations,” The Intl Journal of High Performance Computing Appli-
cations, vol. 15, no. 3, pp. 200–222, 2001.

[20] D. S. Milojicic et al., “Peer-to-peer computing,” 2002, Technical Report
HPL-2002-57, HP Labs.

[21] H. Topcuoglu et al., “Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[22] S. Mittal et al., “A survey of CPU-GPU heterogeneous computing
techniques,” ACM Computing Surveys, vol. 47, no. 4, pp. 1–35, 2015.

[23] C. Gregg et al., “Dynamic heterogeneous scheduling decisions using
historical runtime data,” in Workshop on Applications for Multi-and
Many-Core Processors, 2011, pp. 1–12.

[24] C. Delimitrou et al., “Paragon: QoS-aware scheduling for heterogeneous
datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 77–88, 2013.

[25] K. Ranganathan et al., “Decoupling computation and data scheduling
in distributed data-intensive applications,” in 11th IEEE Intl Symposium
on High Performance Distributed Computing, 2002, pp. 352–358.

[26] K. Chard et al., “High occupancy resource allocation for grid and cloud
systems, a study with DRIVE,” in 19th ACM Intl Symposium on High
Performance Distributed Computing, 2010, pp. 73–84.

[27] E. Deelman et al., “Pegasus, a workflow management system for science
automation,” Future Gen. Computer Sys., vol. 46, pp. 17 – 35, 2015.

[28] R. Chard et al., “Dlhub: Model and data serving for science,” in 2019
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2019, pp. 283–292.

[29] Z. Li et al., “Dlhub: Simplifying publication, discovery, and use of
machine learning models in science,” Journal of Parallel and Distributed
Computing, vol. 147, pp. 64–76, 2021.

[30] V. Hamscher et al., “Evaluation of job-scheduling strategies for grid
computing,” in Intl Workshop on Grid Computing, 2000.

[31] R. Buyya et al., “Economic models for resource management and
scheduling in grid computing,” Concurrency and Computation: Practice
and Experience, vol. 14, no. 13-15, pp. 1507–1542, 2002.

[32] F. Wu et al., “Workflow scheduling in cloud: A survey,” The Journal of
Supercomputing, vol. 71, no. 9, pp. 3373–3418, May 2015.

[33] Z. Zhu et al., “Evolutionary multi-objective workflow scheduling in
cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 5, pp. 1344–1357, 2015.

[34] M. Zaharia et al., “Improving MapReduce performance in heterogeneous
environments.” in Osdi, vol. 8, no. 4, 2008, p. 7.

[35] Z. Li et al., “An exploration of designing a hybrid scale-up/out Hadoop
architecture based on performance measurements,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 2, pp. 386–400, 2016.

[36] “GCP Functions.” https://cloud.google.com/functions/, Seen: 10/2020.
[37] “Azure Functions.” https://azure.microsoft.com/en-us/services/

functions/, Seen: 10/2020.
[38] “Amazon Greengrass,” aws.amazon.com/greengrass/, Seen: 10/2020.
[39] S. Hendrickson et al., “Serverless computation with OpenLambda,” in

8th USENIX Workshop on Hot Topics in Cloud Computing, 2016.
[40] “Kubeless.” https://kubeless.io/, Seen: 10/2020.
[41] “Firecracker,” firecracker-microvm.github.io/, Seen: 10/2020.
[42] A. Suresh et al., “FnSched: An efficient scheduler for serverless func-

tions,” in 5th Intl Workshop on Serverless Computing, 2019, pp. 19–24.
[43] C. Denninnart et al., “Improving robustness of heterogeneous serverless

computing systems via probabilistic task pruning,” in Intl Parallel and
Distributed Processing Symposium Workshops, 2019, pp. 6–15.

[44] B. Carver et al., “Wukong: A scalable and locality-enhanced framework
for serverless parallel computing,” in 11th ACM Symposium on Cloud
Computing, 2020, pp. 1–15.

[45] M. Maheswaran et al., “Dynamic mapping of a class of independent
tasks onto heterogeneous computing systems,” Journal of parallel and
distributed computing, vol. 59, no. 2, pp. 107–131, 1999.

10

aws.amazon.com/lambda/
http://openwhisk.apache.org/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
aws.amazon.com/greengrass/
https://kubeless.io/
firecracker-microvm.github.io/

	Introduction
	Challenges and Problem Formulation
	Challenges
	Function Runtime
	Data Transfer
	Cold Starts

	Problem Formulation
	Objective
	Modeling the Continuum
	Assumptions

	Delta Design and Implementation
	Core Components
	Performance Predictors and Task Scheduling
	Task Tracking
	Data Transfer
	Resource Monitoring

	External Services
	Function Execution
	Endpoint Monitor Implementation
	Predictors
	Transfer Manager Implementation
	Scheduling

	Evaluation
	Experimental Setting
	Micro Experiments
	Learning Under a Small Load
	Data Transfer Trade-offs
	Tolerating Failures and Slowdowns

	Macro Experiments
	Overloading Tasks
	Input Size Trade-offs
	Multiple Heterogeneous Tasks

	Related Work
	Conclusion and Future Work
	References

