
JobPacker: Job Scheduling for Data-Parallel Frameworks with
Hybrid Electrical/Optical Datacenter Networks

Zhuozhao Li
University of Chicago

zhuozhao@uchicago.edu

Haiying Shen
University of Virginia
hs6ms@virginia.edu

ABSTRACT
In spite of many advantages of hybrid electrical/optical datacenter
networks (Hybrid-DCN), current job schedulers for data-parallel
frameworks are not suitable for Hybrid-DCN, since the schedulers
do not aggregate data traffic to facilitate using optical circuit switch
(OCS). In this paper, we propose JobPacker, a job scheduler for
data-parallel frameworks in Hybrid-DCN that aims to take full ad-
vantage of OCS to improve job performance. JobPacker aggregates
the data transfers of a job in order to use OCS to improve data trans-
fer efficiency. It first explores the tradeoff between parallelism and
traffic aggregation for each shuffle-heavy recurring job, and then
generates an offline schedule including which racks to run each job
and the sequence to run the recurring jobs in each rack that yields
the best performance. It has a new sorting method to prioritize
recurring jobs in offline-scheduling to prevent high resource con-
tention while fully utilizing cluster resources. In real-time scheduler,
JobPacker uses the offline schedule to guide the data placement and
schedule recurring jobs, and schedules non-recurring jobs to the
idle resources not assigned to recurring jobs. Trace-driven simula-
tion and GENI-based emulation show that JobPacker reduces the
makespan up to 49% and the median completion time up to 43%,
compared to the state-of-the-art schedulers in Hybrid-DCN.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • The-
ory of computation→ Scheduling algorithms;
ACM Reference Format:
Zhuozhao Li and Haiying Shen. 2019. JobPacker: Job Scheduling for Data-
Parallel Frameworks with Hybrid Electrical/Optical Datacenter Networks.
In 48th International Conference on Parallel Processing (ICPP 2019), August
5–8, 2019, Kyoto, Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3337821.3337880

1 INTRODUCTION
Recently, data-parallel frameworks such as MapReduce [10] and
Spark [35] have been developed for analyzing large datasets. Net-
work has been identified as a key factor for the performance of
data-parallel frameworks for several reasons [22]. First, the jobs
have network-intensive stages (e.g., shuffle in MapReduce) that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337880

transfer a large amount of data. For example, previous work has
shown that 60% and 20% of the jobs are shuffle-heavy jobs (i.e.,
jobs with a large shuffle data size) on the Yahoo! [6] and Facebook
MapReduce clusters [34], respectively. Second, datacenter networks
commonly have link oversubscription ranging from 3:1 to 20:1 for
the racks to the core [4, 10, 20, 29, 30, 34].

To increase network capacity, optical circuit switch (OCS) [14, 33]
is an alternative to traditional packet switch in datacenter network
due to its low capital expenditures (CapEx) and operating expendi-
tures (OpEx). OCS has a certain number of input and output ports,
and one input port can be connected to only one output port at
a time. To change the input-to-output connection, one needs to
reconfigure the OCS connection, causing a reconfiguration delay on
the order of µs-to-ms , which is significantly higher than the latency
of packet switching that is in the order of ns .

EPS Core
Switch

Servers

ToR
Switch

OCS

Figure 1: Architecture of Hybrid-DCN.

Recently, several studies propose hybrid electrical/optical data-
center network (in short Hybrid-DCN) designs [5, 14, 27, 33], which
augment the traditional EPS network with an on-demand rack-to-
rack network using the OCS. Figure 1 shows a general network
abstraction of Hybrid-DCN: the top-of-rack (ToR) switches are con-
nected with a core EPS and an OCS, forming packet-switching and
circuit-switching network, respectively. In Hybrid-DCN, each rack
connects to one input port and one output port, which means that
one rack can send data via OCS to only one other rack at a time.
Due to the high reconfiguration delay, in Hybrid-DCN, OCS is only
used for large data transfers (e.g., 1.125GB) between racks so that
the overhead of µs-to-ms reconfiguration delay is amortized.

Current state-of-the-art schedulers (e.g., Fair [1] and Corral [22])
in data-parallel frameworks fail to leverage OCS to accelerate the
data transfer, since they either spread the tasks of a job (e.g., map
and reduce tasks in MapReduce) among racks which generates
many small flows or schedule the tasks of a job to avoid using
cross-rack traffic which cannot exploit OCS to accelerate the data
transfer. Thus, new job schedulers for data-parallel frameworks are
required to meet the need of Hybrid-DCN.

To take full advantage of Hybrid-DCN, we could aggregate the
data to be transferred by placing the tasks of a job in only a few

https://doi.org/10.1145/3337821.3337880
https://doi.org/10.1145/3337821.3337880
https://doi.org/10.1145/3337821.3337880

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zhuozhao Li and Haiying Shen

racks. However, it may sacrifice the basic principle of data-parallel
frameworks – parallelism (i.e., the tasks of a job running concur-
rently), since each rack may have a limited number of containers
available at a time. If a rack does not have sufficient available re-
sources to run all the assigned tasks concurrently, it increases the
latency of the job (i.e., the duration from the start of a job until its
completion). Hence, there is a tradeoff between parallelism and traf-
fic aggregation. In this paper, we propose JobPacker to efficiently
leverage OCS in Hybrid-DCN by balancing such tradeoff.

JobPacker consists of an offline scheduler (to schedule recurring
jobs in the next unit period of time) and a real-time scheduler. The
offline scheduler consists of a job profiler and a job manager.

The job profiler exploits the fact that many jobs are often recur-
ring and have predictable job characteristics [3, 15, 22] to find all
feasible (map-width, reduce-width) pairs (defined as the number
of racks to run the map and reduce tasks) of each shuffle-heavy
recurring job that can aggregate sufficient shuffle data to use OCS
effectively while achieving sufficient parallelism. Then, the job man-
ager finds the best (map-width, reduce-width) pair with the shortest
completion time, and also generates a global schedule including
which racks to run each recurring job and the sequence to run the
map/reduce tasks of recurring jobs in each rack that yields the best
performance (i.e., high throughput for batch jobs and short comple-
tion time for online jobs). The job manager also has a new sorting
method to prioritize the recurring jobs in scheduling to prevent
high resource contention while fully utilizing cluster resources.

Based on the determined schedule, when jobs and their datasets
are submitted, the real-time scheduler places input datasets and
schedules the recurring jobs to racks accordingly. It schedules non-
recurring (i.e., ad-hoc) jobs to the resources not assigned to the
recurring jobs. As the recurring jobs can finish earlier by more
efficiently utilizing OCS, it leaves more computing resources and
network bandwidth to ad-hoc jobs to complete earlier [22].

We have evaluated JobPacker using large-scale simulation and
small-scale emulation on GENI based on a Facebook trace [6]. The
results show that JobPacker reduces the makespan of a batch of
jobs (i.e., the time to finish all the jobs) up to 49% and the median
job completion time up to 43%, compared to the state-of-the-art
schedulers in Hybrid-DCN.

The rest of the paper is organized as follows. Section 2 and 3
introduce the background and related work. Section 4 introduces
the main design of JobPacker. Section 5 presents the performance
evaluation. Section 6 concludes this paper with our future work.

2 BACKGROUND
To present use case, we use MapReduce [10] as an example for the
data-parallel frameworks in this paper. However, JobPacker can be
applied to other frameworks.

2.1 Hadoop MapReduce
AMapReduce job consists of map and reduce stages, which contain
multiple map and reduce tasks respectively. Each task is processed
by a container, which has a certain amount of CPU and memory
resource [22]. Each map task processes one input data block and
generates intermediate data (called shuffle data). The reduce stage
is a combination of shuffle stage and reduce stage, and each reduce

task consists of two steps: shuffle and reduce. In the shuffle, all
shuffle data with the same key is transferred to the same reduce task.
In YARN [32], when a certain percent (called slowstart threshold)
of map tasks for a job have completed, the reduce tasks of the
job can be scheduled. Only after a reduce task is scheduled, the
shuffle of this reduce task start immediately, which overlaps the
map and shuffle stages (i.e., intra-job concurrency) to reduce the
job execution time.

2.2 Hybrid-DCN
In this paper, we assume there are R racks in a cluster and one
rack can send data via OCS to only another rack at a time, as in
Helios [14] and c-Through [33]. As in [14, 33], we assume that only
the flows with size larger than the elephant flow threshold (e.g.,
1.125GB) are sent via OCS; otherwise, it communicates through
EPS. We define shuffle-heavy jobs as the jobs with shuffle data size
no smaller than the elephant flow threshold.

We express traffic between each rack by a matrixM of size R ∗R.
We denote the traffic sent via OCS as an R ∗ R matrix Mo ; the
remaining traffic is sent via EPS. During one OCS reconfiguration
process, it estimates the traffic, build the matrices, and accordingly
compute and establishes the port connections for data transfers.
As in [14, 33], we assume in this paper that OCS is reconfigured
periodically with a fixed reconfiguration interval.

1 2 3 4

1 20 20 20 20

2 2.5 2.5 2.5 2.5

3 1.25 1.25 1.25 1.25

4 1.25 1.25 1.25 1.25

(a)

1 2 3 4

1 6.25 6.25 6.25 6.25

2 6.25 6.25 6.25 6.25

3 6.25 6.25 6.25 6.25

4 6.25 6.25 6.25 6.25

(b)

Figure 2: Balance-skewness of demand matrix Mo . Suppose that a
shuffle-heavy job with 20map tasks, 4 reduce tasks and 100 units of
shuffle data runs in a 4-rack cluster. Suppose flows with no smaller
than 1 unit are elephant flows and the speed of OCS is 1 per unit
time. Assume eachmap task generates the same size of shuffle data
and each reduce task processes the same size of data [22]. (a) This
is the demand matrix when racks 1,2,3,4 process 16,2,1,1 map tasks
and 1,1,1,1 reduce task, respectively. The time to complete the data
transfer of thismatrix is 20+20+20=60. (b) This is the demandmatrix
when racks 1,2,3,4 process 5,5,5,5 map tasks and 1,1,1,1 reduce task,
respectively. The time to complete the data transfer of this matrix
is 6.25+6.25+6.25=18.75.

To fully take advantage of OCS, the desired properties of matrices
M andMo are listed as follows.
Skewness [25]: To take full advantage of OCS, we expect that the
demand from any rack is high to only a few other racks and low to
the remaining racks, forming a skew demand matrixM . Thus, the
high-demand entries inM can be well served by the OCS, while the
low-demand entries can be served by the EPS. Sparsity [25]: The
OCS demand matrixMo should be sparse (with only a few non-zero
entries), since a rack can send data via OCS to only one other rack
at a time. Balance-skewness: The shuffle traffic of a shuffle-heavy
job is balanced between racks to reduce the durations of shuffle
data transfer, as illustrated in Figure 2.

JobPacker ICPP 2019, August 5–8, 2019, Kyoto, Japan

2.3 Opportunity
Several previous studies [3, 15, 18, 22] show that cluster workloads
contain a large number of recurring jobs, whose job characteristics,
including input/shuffle/output data sizes, job arrival time, the num-
ber of map/reduce tasks, and the map/reduce task execution time,
can be predicted with a small error (e.g., 6.5% [22]). The predictabil-
ity characteristics allow us to determine which racks to place the
job input datasets and run the tasks for the recurring jobs before
the input datasets and the jobs are submitted to the cluster. Many
practical scenarios allow us to place data beforehand [22]. For ex-
ample, in the cloud environment such as AWS, data is often stored
in a dedicated storage cluster (e.g., Amazon S3). To run MapReduce
on the cloud, the data is fetched from the storage cluster. At this
step, the data can be placed on the pre-determined racks.

3 RELATEDWORK
Previous studies [5, 14, 33] have deployed OCS with ∼10ms recon-
figuration delay in datacenter networks to improve performance. In
this paper, we aim to design a job scheduler to use OCS efficiently
in Hybrid-DCN to improve performance.

There has been much effort [1, 4, 8, 9, 17, 22, 28, 34] focusing on
designing schedulers for data-parallel clusters to improve perfor-
mance (e.g., throughput). However, none of these schedulers tackle
the scheduling problem in Hybrid-DCN to leverage OCS effectively.
For example, in Fair [1] and Delay [34] schedulers, the input data is
randomly spread among racks, so that the map tasks is also spread
among racks to achieve high map data locality. ShuffleWatcher [4]
aims to distribute the shuffle network traffic spatially (among dif-
ferent racks) and temporally (during different time periods). These
two schedulers above generate many mice flows, which cannot use
OCS effectively. Corral [22] places all the map and reduce tasks of a
job in the same set of racks to avoid cross-rack shuffle data transfer.
However, it imposes an intensive container contention in the set
of racks, which may sacrifice the parallelism and decrease perfor-
mance. In additional, Corral cannot take full advantage of OCS in
Hybrid-DCN since it attempts to avoid cross-rack traffic, rather
than efficiently utilizing OCS to accelerate cross-rack traffic transfer.
Unlike these previous studies, JobPacker is a new job scheduler for
Hybrid-DCN that can take full advantage of the high-bandwidth
OCS to achieve better job performance.

Our prior work [7, 23] also focuses on designing job schedulers
to aggregate data transfers to efficiently use OCS in Hybrid-DCN.
Unlike prior work that places tasks considering both Coflow com-
pletion time and data transfer aggregation, this paper attempts to
leverage the predictable nature in production workloads to explore
the tradeoff between parallelism and data transfer aggregation.

There have been many other works [11, 13, 19, 24] focusing on
using various cluster configurations and file systems to improve the
job performance. Our paper is orthogonal to these works, which
can be combined to further improve the job performance.

4 DESIGN OF JOBPACKER
4.1 System Architecture
JobPacker has a shuffle data aggregation scheme that facilitates to
use OCS. In addition, as shown in Figure 3, JobPacker consists of an

offline scheduler and a real-time scheduler. The offline scheduler is
responsible for deciding the schedule for the recurring jobs in the
next unit period and has two main components – job profiler and
job manager. The job profiler explores the tradeoff between paral-
lelism and traffic aggregation, and returns all feasible map-width
and reduce-width pairs of each shuffle-heavy recurring job (i.e.,
number of racks to run the map and reduce tasks) that can leverage
OCS effectively while achieving sufficient parallelism. Then, the
job manager finds out the best (map-width, reduce-width) for the
shortest completion time of each shuffle-heavy recurring job, and
also generates the global schedule including which racks to run the
map/reduce tasks of each recurring job, and the sequence to run the
map/reduce tasks of recurring jobs in each rack that yields the best
performance (i.e., high throughput for batch jobs and short com-
pletion time for online jobs). For example, if the map tasks of job i ,
the reduce tasks of job j , and the map tasks of job k are assigned to
a rack, the sequence on this rack is Seq = {mapi , reducej ,mapk },
wheremapj and reducej means any map task and any reduce task
of job j, respectively.

Offline scheduler

Job Manager

All feasible (map‐width,
reduce‐width) pairs

Job Profiler

Real‐time scheduler

Task
placement
strategy

Data
placement
strategy

Find the schedule that yields
the best performance

Submit job Upload data

Figure 3: System architecture of JobPacker.

Based on offline schedule generated from job manager, the real-
time scheduler guides the data placement and task placement of
the job. The ad-hoc jobs are then scheduled based on previous
scheduling scheme (e.g., Fair [1]) and use the idle resources that
are not assigned to recurring jobs.

4.2 Shuffle Data Aggregation
Currently, the reduce task is associated with its shuffle and the
shuffle starts fetching data once the corresponding reduce task is
scheduled [32]. However, this default scheme does not facilitate
shuffle traffic aggregation. Hence, we propose not to start the shuffle
immediately after its corresponding reduce task is scheduled to a
container. In order to aggregate the shuffle data transfers of a job,
we force the shuffle to start until more reduce tasks from the same
job are assigned to containers and the size of aggregated shuffle
data of the reduce tasks reaches the elephant flow threshold. Then,
we can use high-bandwidth OCS for shuffle data transfer to reduce
the transfer delay of low-bandwidth EPS. If the size of aggregated
shuffle data cannot reach the elephant flow threshold for a job (i.e.,

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zhuozhao Li and Haiying Shen

non-shuffle-heavy jobs), the shuffle data is transferred through EPS,
which will not take a long time due to the small data size.

Figure 4 illustrates the shuffle data transfers for shuffle-heavy
jobs with default schedulers and with JobPacker. The shuffle data
aggregation in JobPacker brings two advantages. First, it enables the
use of high-bandwidth OCS to accelerate the shuffle data transfers
to shorten the shuffle duration for a job. On the contrary, without
shuffle data aggregation, a shuffle-heavy job may have to use the
low-bandwidth EPS in Hybrid-DCN since the sizes of its traffic
flows are small. The shuffle data aggregation does not degrade the
performance of non-shuffle-heavy jobs much, as their shuffle data
is relatively small so their shuffle duration is relatively short.

Map stage

Shuffle stage

Job start Job finishtime

Reduce stageSlowstart
threshold

Without data aggregation, a shuffle-heavy
job may have to use EPS in Hybrid-DCN

The size of shuffle data
reaches the elephant flow

threshold

Slowstart
threshold

Map stage

Shuffle stage

Job start Job finishtime

Reduce stage

With data aggregation, a shuffle-heavy
job can use OCS in Hybrid-DCN

Previous scheduler

JobPacker

Figure 4: Illustration of shuffle data aggregation.

Second, in YARN, the slowstart threshold is set to a small value
(default 5% [4]) to achieve high intra-job concurrency for high per-
formance. However, in this case, the reduce tasks occupy the con-
tainers when they are doing nothing but transferring shuffle data,
which wastes precious resources. With the data aggregation scheme
in Hybrid-DCN, as shown in Figure 4, JobPacker can increase the
slowstart threshold to prevent the reduce tasks from occupying re-
sources for too long without compromising job performance, since
fast data transfers through high-bandwidth OCS offsets the influ-
ence of intra-job concurrency reduction for shuffle-heavy jobs. For
non-shuffle-heavy jobs, since transferring small-size data can be
completed in short time duration, they do not need a low slowstart
threshold for high intra-job concurrency. The slowstart threshold
should be determined depending on the workloads in the system
(i.e., whether reduce tasks can occupy containers for a long time
without compromising other tasks’ performance). If the system is
lightly loaded, the slowstart threshold can be smaller for higher
intra-job concurrency for high performance.

4.3 Offline Scheduler
We use r

map
j and r r edj to denote the number of racks that are

assigned to run job j’s map and reduce tasks, respectively. We
evenly distribute the map and reduce tasks among the rmap

j and
r r edj racks to achieve the balance-skewness property.

4.3.1 Job Profiler. We use a latency response function (LRF) [22] to
model the latency for every job j. LRF takes the number of racks
allocated to job j as input and predicts the latency of job j. LRF

assumes that the map, shuffle and reduce stages run sequentially
for simplicity though the shuffle stage overlaps with the map stage.
This assumption matches JobPacker since it reduces the overlap
(as shown in Figure 4). LRF also assumes that the map and reduce
tasks of job j are scheduled on the same number of racks (i.e.,
r
map
j = r r edj), which is not always correct in practice. In this paper,
we remove this assumption to improve LRF. The latency of a job is
calculated by:

Lj (r
map
j , r r edj) = l

map
j (r

map
j)+lshuj (r

map
j , r r edj)+lr edj (r r edj), (1)

where lmap
j (r

map
j), lshuj (r

map
j , r r edj) and lr edj (r r edj) denote the la-

tency for each of the three stages. Please refer to [22] for the details
of how to compute lmap

j (r
map
j) and lr edj (r r edj) from the estimated

job characteristics (input/shuffle/output data sizes and the number

of tasks). lshuj (r
map
j , r r edj)=

D j (r
map
j ,r r edj)

BW , whereD j (r
map
j , r r edj) =

Ds
j

rmap
j ·r r edj

· (r r edj − 1) is cross-rack shuffle data size, BW is the

bandwidth, and Ds
j is the shuffle data size of job j. To determine

bandwidth BW , we need to determine whether OCS or EPS is used
in the shuffle stage of job j. Since shuffle data is sent from all map
tasks to all reduce tasks, we check if the shuffle data size of job j

divided by rmap
j ∗ r r edj (i.e.,

Ds
j

rmap
j ·r r edj

) is greater than the elephant

flow threshold. If yes, OCS is used; otherwise, EPS is used.
The job scheduler needs to carefully determine rmap

j and r r edj
for each shuffle-heavy job to achieve an optimal balance between
parallelism and traffic aggregation, which yields relatively low
job latency. For each value assignment of rmap

j and r r edj , we can
compute the latency of job j based on Equ. (1).

Figure 5 shows the latencies of an example shuffle-heavy job un-
der different assignment combinations on a 15-rack cluster, where
each rack has 600 containers. We see that as rmap

j increases from 1
to 5, the latency of the job drops significantly due to higher paral-
lelism. The number of map tasks for this job is 3472, which is greater
than the total number of containers in 5 racks (5 ∗ 600 = 3000).
Since the job has 169 reduce tasks, running the reduce tasks on
one rack (i.e., r r edj = 1) is sufficient for all the reduce tasks to run
concurrently, i.e., achieving parallelism. Additionally, the latencies
in the green zone are considerably lower than the latencies in the
other zones due to two reasons. First, the assignment combinations
in this zone do not sacrifice the parallelism. Second, OCS is used
for shuffle data transfer in the green zone. As a result, the green
zone illustrates all feasible (map-width, reduce-width) pairs for job
j that can leverage the OCS to achieve a good tradeoff between
parallelism and traffic aggregation.

4.3.2 Job Manager. As [22], we consider two scenarios of job sub-
mission: batch and online scenarios. In the batch scenario, all jobs
are submitted at the same time, and the goal is to makespan, i.e.,
the time to finish all the jobs in the batch. In the online scenario,
jobs are submitted at different times and the goal is to minimize the
average job completion time, i.e., the average time from the arrival
of a job until its completion.

For both batch and online scenarios, we can model the job sched-
uling as an optimization problem to achieve different goals. Never-
theless, the optimization problems for both scenarios are analogous

JobPacker ICPP 2019, August 5–8, 2019, Kyoto, Japan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630
2 379 373 373 373 373 373 373 373 373 373 373 373 373 373 373
3 295 289 287 287 287 287 287 287 287 287 287 287 287 287 287
4 295 289 287 286 286 286 286 286 286 286 286 286 286 286 286
5 295 289 287 286 285 285 285 285 285 285 285 285 285 285 285
6 211 205 203 202 202 201 201 201 201 201 201 201 401 401 401
7 211 205 203 202 202 201 201 201 201 201 372 372 372 372 372
8 211 205 203 202 202 201 201 201 201 351 351 351 351 351 351
9 211 205 203 202 202 201 201 201 334 334 334 334 334 334 334
10 211 205 203 202 202 201 201 320 320 320 320 320 320 320 320
11 211 205 203 202 202 201 309 309 309 309 309 309 309 309 309
12 211 205 203 202 202 201 300 300 300 300 300 300 300 300 300
13 211 205 203 202 202 292 292 292 292 292 292 292 292 292 292
14 211 205 203 202 202 286 286 286 286 286 286 286 286 286 286
15 211 205 203 202 202 280 280 280 280 280 280 280 280 280 280

Figure 5: Latencies of an example job under different assign-
ments. The job consists of 3472 map tasks and 169 reduce
tasks. The row and column represent rmap

j and r r edj . Each en-
try is the latency when the map and reduce tasks are evenly
distribute to r

map
j and r r edj racks.

to complex directed-acyclic-graph (DAG) structured job scheduling
problem [22], which is well-known as NP-hard [26, 31]. Hence, we
propose a heuristic method to solve the scheduling problem.

Batch scenario. We define a shuffle-heavy job’s width as the
maximum value of rmap

j + r r edj among all of its feasible (map-
width, reduce-width) pairs. The width of a non-shuffle-heavy job
is defined as the total number of map and reduce tasks divided by
the number of containers on a rack. First, we need to determine the
priority of each job in scheduling. We could use the algorithm
in Corral [22] that sorts the batch of jobs in descending order
of job width. This widest-job-first algorithm avoids the case that
the widest job cannot find enough racks to run all of its tasks
concurrently and needs to wait for the job that is allocated to
only a few racks to complete, which wastes the resources [22].
However, using this sorting algorithm, the extremely shuffle-heavy
jobs are more likely to have very high priorities as these jobs most
probably have extremely huge input data size (see explanation
in Section 4.4) and hence have more tasks, which requires more
racks. Then, it may lead to an extremely high network load and
computing load (i.e., demand for a larger number of containers) at
the beginning and a light network and computing load later. This
resource utilization pattern is not desired [4], because all these
extremely shuffle-heavy jobs compete for the precious resource
simultaneously at the beginning, which degrades the performance
significantly.

In order to solve this problem, we propose to divide the workload
(for shuffle data transfer and map/reduce tasks) to B sub-batches,
so that each sub-batch’s workload will not impose resource compe-
tition while fully utilizing cluster resource, as shown in Figure 6.
The number of sub-batches B is a tunable parameter based on the
entire cluster capacity and the resource demands of jobs.

To divide into B sub-batches, we use Tetris [17], which chooses a
job to assign to a server with available capacity in order to increase
the resource utilization of each server considering multi-resources
(e.g., CPU, memory, bandwidth). Basically, based on the available

…

…

Priority based on widest‐job‐first algorithm

Priority in JobPacker to avoid resource competition while fully use resources

Figure 6: Priority determination based on sub-batches.

resources on a server, Tetris gives a score1 to each job and then
greedily picks the job with the highest score to run on the server.
We treat each sub-batch as a server and treat the shuffle data size,
the number of map tasks and the number of reduce tasks of each job
as its demand on multi-resources. The capacity of each sub-batch is
the capacity of the cluster on different dimensions (total cross-rack
bandwidth, the number of containers). Then the batch division
problem is interpreted as the job-to-server packing problem. The
output includes B sub-batches, and the resource demands on each
resource from all sub-batch are similar. The resource demands of a
sub-batch on different resources equal the sum of shuffle data sizes,
the sum of the number of map tasks and the sum of the number of
reduce tasks of all the jobs in the sub-batch.

In each sub-batch, we sort the jobs in the descending order of
width. The jobs with the same width are further sorted in the
decreasing order of job latency, because the longest-latency-job-
first first algorithm is effective for makespan minimization [16, 22].
After sorting, we combine all the sub-batches in a random order.
Finally all the jobs form a list for sequential offline scheduling as
shown in Figure 6.

During the offline scheduling, we keep track of the time Tik
when the container k on rack i completes the current task and
requests the next task. We compute the time needed by the map,
shuffle and reduce stage using the method in Equ. (1).

For each job j from the sorted list, we check whether it is shuffle-
heavy or not and conduct the scheduling as follows. We assign the
tasks of a shuffle-heavy job to the best (map-width, reduce-width)
pair among all feasible pairs that yields the best performance, while
assigning the tasks of a non-shuffle-heavy job to any containers
that are available. We use Nmap

j and N r ed
j to denote the number

of map tasks and reduce tasks of job j.
Non-shuffle-heavy jobs. We pick the first Nmap

j available con-
tainers based on the next available time Tik of each container. We
assign these containers to the map tasks and update the Tik . Next,
we pick the first N r ed

j available containers based on Tik to run the
reduce tasks of job j . The reduce stage start time Sr edj is computed
by adding the completion time of the last map task (cmp

map
j) and

the shuffle stage latency lshuj (r
map
j , r r edj). Finally, the job manager

updates the sequences of the racks that run job j’s map and reduce
tasks correspondingly, and records the set of racks that run job
j’s map tasks (Rmap

j), which will be used to guide the input data
placement in real-time scheduling.
1For example, a server has (0.2,0.3,0.5) available resources. If a job consumes
(0.1,0.2,0.3), the score of this job is the dot product of the two resource vectors, i.e.,
0.1*0.2+0.2*0.3+0.3*0.5=0.23.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zhuozhao Li and Haiying Shen

Shuffle-heavy jobs.Weenumerate each (map-width, reduce-width)
pair among all feasible pairs, and find the pair that yields the ear-
liest completion time. For each rack i , we find out the time when
⌈N

map
j /r

map
j ⌉ containers are available. Then we find r

map
j the

earliest such available racks to run its map tasks, and update the
corresponding Tik of each assigned container. We use the same
way above to compute the completion time of the last map task
cmp

map
j . Similarly, we find r r edj the earliest available racks that

have ⌈N r ed
j /r r edj ⌉ available containers. Then we can compute the

job completion time in this iteration. After we finish all interations,
we find out the (map-width, reduce-width) that yields the earliest
job completion for job j, and which racks to run job j’s map and
reduce tasks. Finally, the job manager updates the sequences of
those racks correspondingly, and records the set of racks that run
job j’s map tasks (Rmap

j).
As a result, in the offline schedule, a rack has large data transfer

to only a few racks and has small data transfer to the other racks,
which satisfies the skewness and sparsity desired properties. Also,
since the tasks of each shuffle-heavy job are evenly distributed
among the set of racks, the balance-skewness is achieved.

Online scenario. The objective in the online scenario is to min-
imize the average job completion time. We sort the jobs in an
increasing order of their predicted job arrival times. When the jobs
are submitted at the same time, we use the sorting algorithm for
sorting jobs in each sub-batch. Other steps are the same as those in
the batch scenario.

Over-provisioning. Recall that we estimate the resource de-
mand (i.e., the number of containers needed) of each recurring job
with a small error. However, in the offline scheduler, we intention-
ally assign more containers to each job than the estimation by a
certain ratio (i.e., over-provisioning ratio) due to two reasons. First,
we take the estimation variation into account. Thus, the recurring
jobs can have sufficient containers during the actual job execution.
Second, we attempt to leave ad-hoc jobs sufficient containers to
run in the cluster. This strategy will not waste resource because
during actual job execution, when the recurring jobs do not need
as many containers as planned in the offline schedule, the unused
containers can be used by the ad-hoc jobs or other recurring jobs
assigned to the same racks. The cluster operators can adaptively
determine the over-provisioning ratio based on the estimation vari-
ance and the percent of ad-hoc jobs in their clusters to achieve
better performance. If a cluster has higher estimation variance or
fewer recurring jobs, we can set a higher over-provisioning ratio;
otherwise, it can be zero.

Summary. The job manager in JobPacker returns a sequence
for each rack, which includes the recurring jobs’ map or reduce
tasks to run on this rack. Besides the sequence for each rack, for
each job j, the job manager outputs Rmap

j to guide the placement
of its input data. The outputs of job manager are then passed to the
real-time scheduler, which will be introduced in Section 4.4.

4.4 Real-time Scheduler
The real-time scheduler executes the generated offline schedule.
When the input dataset of a recurring job j is uploaded to the
cluster, JobPacker places one replica of each data chunk of job

j in a randomly chosen rack from R
map
j to achieve data locality.

The second and the third replicas of all data chunks are randomly
placed on the other racks. This data placement strategy still obeys
the default data placement in HDFS that places the replicas of each
data chunk in two random racks.

We try to determine if we can judge whether an ad-hoc job is
a shuffle-heavy job based on its input data size in order to avoid
scheduling shuffle-heavy jobs together in a rack to achieve the spar-
sity property. Using the two Facebook workloads in 2009 (FB2009-1,
FB2009-2) and two Facebook workloads in 2010 (FB2010-1, FB2010-
2) from [6], we plot Figure 7 that shows the cumulative distribution
function (CDF) of input data size of all the shuffle-heavy jobs (shuf-
fle data size greater than 1.125GB). We observe that most shuffle-
heavy jobs have an input data size larger than 1GB. Based on the
above observation, when the input data of a job is submitted to
the cluster, if the input data size is greater than a threshold (e.g.,
1GB), we empirically treat the job as a shuffle-heavy job. Note
that non-shuffle-heavy jobs may be sometimes over-estimated as
shuffle-heavy jobs. However, over-estimation is better than under-
estimation, as under-estimation may inappropriately place some
shuffle-heavy jobs, which generates unwanted demand matrices.

0
0.2
0.4
0.6
0.8

1
1.2

0.1 1 10 100 1000 10000

CD
F

Input data size (GB)

FB2009-1
FB2009-2
FB2010-1
FB2010-2

Figure 7: Workload analysis of shuffle-heavy jobs.

To determine the priorities of ad-hoc jobs, we use the default
user-specified scheduler, such as Fair [1]. Recall that in the offline
schedule, each rack is assigned with a sequence of recurring jobs.
During scheduling, when a rack has a container available, the real-
time scheduler tries to follow the offline schedule (which is only for
recurring jobs). If there are recurring jobs, the real-time scheduler
selects a map/reduce task of the first job in the sequence. Only
when there is no recurring job assigned to this rack, an ad-hoc
job will be scheduled to the container. In this step, the scheduler
tries to schedule shuffle-heavy job first while avoiding scheduling
shuffle-heavy jobs together in a rack in order to achieve the sparsity
property. Specifically, the scheduler checks whether there are any
tasks of shuffle-heavy jobs currently running in the rack. If yes, the
scheduler selects a task from the ad-hoc non-shuffle-heavy job with
the highest priority. Otherwise, the scheduler gives high priority
to the task from the ad-hoc shuffle-heavy job with the highest
priority if there are any in the queue. In the case of failure of a
rack, JobPacker ignores the guidance from the offline scheduler
and schedules the jobs assigned to this rack based on the default
scheduler.
Overhead. In real-time scheduler, for each scheduling decision,
JobPacker performs simple examinations (e.g., sequence and prior-
ity of jobs), which is quite similar to the Fair scheduler [1]. Hence,
the computation overhead in real-time scheduler is no more than
Fair, indicating the excellent scalability of JobPacker.

JobPacker ICPP 2019, August 5–8, 2019, Kyoto, Japan

5 PERFORMANCE EVALUATION
5.1 Traces and Settings
5.1.1 Workload traces. We evaluated JobPacker assuming that all
the jobs are recurring first, and then using the workload with a mix
of both ad-hoc and recurring jobs. We also conducted the sensitivity
analysis of different settings. The workload trace we used was from
the SWIM Facebook workloads [6]. Since this workload trace misses
important information such as task running time, we first replayed
all the jobs in the trace (using the tools provided in the same project
[6]) one by one on a single-node Hadoop YARN cluster and then
recorded the necessary information for every job. We used this
recorded log as the workload trace for simulation and emulation.

5.1.2 Simulation. In order to evaluate the performance of Job-
Packer in a large scale, we built a flow-based event simulator to re-
play the workload trace. In the simulation, there are 600 servers, or-
ganized into 20 racks with 30 servers each. Each server can run up to
20 tasks and has 10Gbps network interface card (NIC). The Hybrid-
DCN topology is the same as in Figure 1. The link rate between the
ToR switch and core EPS is 30Gbps, which yields a 10:1 oversub-
scription ratio. The ToR switch and OCS are always connected with
100Gbps link. We ran 1000 jobs selected from the workload. The job
characteristics of the 1000 jobs are listed in Table 1. The elephant
flow threshold was set to 1.125GB, which is inferred empirically
from previous studies [14, 21, 25] to achieve high OCS utilization. As
in [14, 33], we used Edmonds’ algorithm [12] to compute the optimal
input-to-output configuration for OCS in every reconfiguration.

5.1.3 Emulation on GENI. We also conducted an emulation on
GENI [2]. We built a testbed with 10 servers on GENI, each emu-
lating a virtual rack (VR). We assumed that each VR can run up to
10 tasks. Due to the bandwidth availability, the link rate between
VRs via OCS is 1Gbps, while the link rate between VR via EPS is
0.1Gbps. We limited the bandwidth for each task to 0.1Gbps. We ran
200 jobs chosen from the workload trace. We shrank the input and
output data sizes of each task, and the elephant flow threshold by a
factor of 100, which equals the network bandwidth shrinking factor
in GENI. The emulation allows us to evaluate the performance of
JobPacker under real network environment.

Table 1: Job characteristics.

Percentile 5%-tile Median 95%-tile
Shuffle data size (GB) 0.1 2.5 82

5.1.4 Baselines. We compared JobPacker with Hybrid-DCN with
three other systems.

(1) Fair scheduler [1] with Hybrid-DCN (F-Hybrid). It uses the
Fair scheduler to schedule the jobs in Hybrid-DCN. Fair is the most
widely used scheduler in current production clusters [1], and it
assigns resources to jobs so that each job roughly receives an equal
share of resources (containers) over time.

(2) Corral [22] with Hybrid-DCN (Corral). Corral places the map
and reduce tasks of the same job on the same set of racks to reduce
the cross-rack shuffle data transfer.

(3) Fair scheduler with traditional packet-switched datacenter
network (F-EPS). It uses the Fair scheduler to schedule the jobs
in a packet-switched network. In this system, the ToR switches

0
0.2
0.4
0.6
0.8
1

1.2

JobPacker F-Hybrid Corral F-EPS
(costly)

M
ak
es
pa

n

(a) Simulation

0
0.2
0.4
0.6
0.8
1

1.2

JobPacker F-Hybrid Corral F-EPS
(costly)

M
ak
es
pa

n

(b) GENI

Figure 8: Makespan results (batch).

are connected through an EPS core switch and their link rate is
100Gbps (1Gbps on GENI). This link rate is as high as the link
rate of OCS though the system does not have OCS. However, the
high-bandwidth EPS in this architecture leads to up to a factor of 9
higher CapEx and OpEx [14, 33], compared to the Hybrid-DCN.

5.2 Experimental Results
In this section, we considered that all the jobs (1000 jobs in sim-
ulation and 200 jobs in GENI) are recurring and can be predicted
with zero error. All the experiments were run for 20 times and the
average results are reported. The OCS was reconfigured every 1
second [33] and the reconfiguration delay was 10ms. The slowstart
threshold was 0.7. The over-provisioning ratio was set to 0, as all
the jobs are recurring.

5.2.1 Batch Scenario. In the batch scenario, the 1000 jobs were
divided into 5 sub-batches. Figures 8(a) and 8(b) show the makespan
of different methods in the simulation and GENI, respectively. All
the results are normalized by the results of F-Hybrid. We see that
JobPacker outperforms F-Hybrid by 47% and 49% in the simulation
and GENI, respectively. Compared with Corral, JobPacker has 29%
and 27% improvement of makespan in the simulation and GENI,
respectively. We also see that in the simulation and GENI, JobPacker
achieves a comparable performance as F-EPS (less than 5% differ-
ence). However, as mentioned above, F-EPS generates significantly
higher CapEx and OpEx.

We then measured the percentage of total traffic sent via OCS
and EPS, respectively. Figures 9(a) and 9(b) show the percentage of
traffic sent by OCS and EPS in the simulation and GENI, respectively.
Since F-EPS does not have OCS, we do not show its results. We
see that the OCS has a much higher utilization in JobPacker in the
batch scenario (>96%), compared with F-Hybrid (∼0.8%) and Corral
(<23%). The result demonstrates the outstanding performance of
JobPacker on taking advantage of OCS.

5.2.2 Online Scenario. In this section, the jobs arrived uniformly
at random in [0, 90]min and in [0, 20]min in the simulation and
GENI experiment, respectively. Figures 10(a) and 10(b) show the

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zhuozhao Li and Haiying Shen

0
20
40
60
80

100

OCS EPS

Pe
rc

en
ta

ge
 o

f
tr

af
fi

c JobPacker
F-Hybrid
Corral

(a) Simulation

0

20

40

60

80

100

OCS EPS

Pe
rc

en
ta

ge
 o

f t
ra

ff
ic JobPacker

F-Hybrid
Corral

(b) GENI

Figure 9: Percentage of traffic via OCS and EPS (batch).

CDF of job completion times in the simulation and GENI. We see
that the JobPacker significantly shortens the job completion times,
compared with F-Hybrid and Corral. Specifically, JobPacker out-
performs F-Hybrid with 43% and 42% improvement at the median
job completion time in the simulation and GENI, respectively. Com-
pared with Corral, JobPacker reduces the median job completion
time by 28% and 27% in the simulation and GENI, respectively. We
also see that the CDF of JobPacker is very similar to the CDF of
F-EPS which however is very costly, indicating that JobPacker can
be a cost-efficient solution for the network bottleneck problem in
data-parallel frameworks.

0
0.2
0.4
0.6
0.8

1

0 600 1200 1800 2400 3000

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(a) Simulation

0
0.2
0.4
0.6
0.8

1

0 600 1200 1800 2400 3000 3600

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(b) GENI

Figure 10: CDF of completion times (online).

0
20
40
60
80

100

OCS EPS

Pe
rc

en
ta

ge
 o

f
tr

af
fi

c JobPacker
F-Hybrid
Corral

(a) Simulation

0

20

40

60

80

100

OCS EPS

Pe
rc

en
ta

ge
 o

f
tr

af
fi

c JobPacker
F-Hybrid
Corral

(b) GENI

Figure 11: Percentage of traffic via OCS and EPS (online).

We also measured the traffic sent via OCS and via EPS in the
online scenario, as shown in Figure 11. Similarly, compared with
F-Hybrid and Corral, JobPacker has a much higher OCS utilization
in the online scenario.

5.3 Mix of Ad-hoc and Recurring Jobs
In this section, as in [22], we evaluated JobPacker in an online sce-
nario, where there are a mix of ad-hoc and recurring jobs. Previous
studies [3, 15, 22] indicate that there are 40%-60% recurring jobs
in the cluster. Therefore, we randomly selected half of the jobs
as ad-hoc jobs and the rest are still recurring jobs. All the jobs

0
0.2
0.4
0.6
0.8

1

0 500 1000 1500 2000 2500 3000

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(a) Recurring jobs

0
0.2
0.4
0.6
0.8

1

0 500 1000 1500 2000 2500 3000

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(b) Ad-hoc jobs

Figure 12: CDF of completion times with a mix of jobs (sim-
ulation).

0
0.2
0.4
0.6
0.8

1

0 600 1200 1800 2400 3000 3600

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(a) Recurring jobs

0
0.2
0.4
0.6
0.8

1

0 600 1200 1800 2400 3000 3600

C
D

F

Job completion time (s)

JobPacker
F-Hybrid
F-EPS (costly)
Corral

(b) Ad-hoc jobs

Figure 13: CDF of completion times with a mix of jobs
(GENI).

arrived uniformly at random in [0, 90]min and [0, 15]min in simu-
lation and GENI, respectively. In the offline scheduler, we set the
over-provisioning ratio to 1.0.

Figures 12(a) and 12(b) show the CDF of job completion times
for recurring jobs and ad-hoc jobs in the simulation, respectively.
Figures 13(a) and 13(b) show the CDF of job completion times for
recurring jobs and ad-hoc jobs in GENI, respectively. Clearly, Job-
Packer generates shorter job completion times for both recurring
and ad-hoc jobs, compared with F-Hybrid and Corral. In the simu-
lation, we see that JobPacker reduces the median job completion
time of recurring jobs and ad-hoc jobs by 40% and 38%, respectively,
compared with F-Hybrid. In GENI, JobPacker reduces the median
job completion time of recurring jobs and ad-hoc jobs by 39% and
37%, respectively, We also see that JobPacker outperforms Corral by
24% and 25% for recurring jobs and ad-hoc jobs in the simulation,
and by 26% and 29% for recurring jobs and ad-hoc jobs in GENI.
JobPacker achieves a comparable performance as F-EPS (which is
very costly) in both simulation and GENI, demonstrating the su-
perior performance of JobPacker. This is because in JobPacker, the
recurring jobs can more effectively utilize the OCS to transfer their
shuffle data, which significantly frees the network resource on EPS.
Although we do not place the tasks of ad-hoc jobs on a few racks
to aggregate the data transfers to use the OCS, they still benefit
from the much lower utilization of network resource on EPS. Be-
sides, as the recurring jobs finish faster, more computing resources
are available for the ad-hoc jobs, which significantly increases the
performance of ad-hoc jobs as well.

5.4 Sensitivity Analysis
In this section, we used our simulation environment to evaluate
the robustness of JobPacker to several factors. Due to the space
limit, we only show the results in online scenario, unless otherwise
specified. We analyze the sensitivity when there are all recurring

JobPacker ICPP 2019, August 5–8, 2019, Kyoto, Japan

0
600

1200
1800
2400
3000

0 0.1 0.2 0.3 0.4 0.5Jo
b

 c
o

m
p

le
ti

o
n

 t
im

e
(s

)

Error rate in shuffle data size

F-Hybrid F-EPS (costly)
JobPacker Corral

(a) Error in shuffle data size

0
600

1200
1800
2400
3000

0 0.1 0.2 0.3 0.4 0.5Jo
b

 c
o

m
p

le
ti

o
n

 t
im

e
(s

)

Error rate in shuffle data size

F-Hybrid F-EPS (costly)
JobPacker Corral

(b) Error in arrival time

Figure 14: Performance variation with error in prediction of
job characteristics.

jobs, as in [22], unless otherwise specified. The experiment settings
are the same as Section 5.2 unless otherwise specified.

5.4.1 Error in prediction of shuffle data size. We use the predicted
shuffle data size to check if it is a shuffle-heavy job, determine all
the feasible map-width and reduce-width, and compute the latency
of shuffle stage. We define the prediction error rate of a job’s shuffle
data size as |r eal−predict ion |

r eal . Though recent studies [3, 15, 22]
show that the characteristics of recurring jobs can be predicted
with a low error rate around 6.5%, we varied the error rate for the
prediction of the shuffle data size of all the jobs by up to 50% to see
how JobPacker performs. Figure 14(a) shows the median, 5th , and
95th percentile job completion times of all the jobs in JobPacker
versus different error rates. We do not measure the performance of
F-Hybrid and F-EPS here since they do not predict the shuffle data
size. As we see, the job completion times increase as the error rate
increases. However, even with some prediction error, JobPacker
still outperforms F-Hybrid by 33% and Corral by 25% at the median,
and achieves similar performance as F-EPS, as JobPacker effectively
utilizes the OCS.

5.4.2 Error in job arrival time. In the offline scheduler, we sort the
jobs in the online scenario based on the predicted job arrival times.
In practice, the job arrival time may vary from the predicted arrival
time. In this experiment, we added a random time delay in the range
of [−200, 200]s to f portion of jobs, where f is varied in the range of
[10%, 50%]. Figure 14(b) shows the median, 5th , and 95th percentile
job completion times of all the jobs in JobPacker with varying
portion of delayed jobs. We see that although up to 50% of the
jobs’ arrival times are not accurate, JobPacker shortens the median
job completion time by 23% and 22% compared with F-Hybrid and
Corral, respectively, and achieves comparable performance to F-
EPS.

5.4.3 Slowstart threshold. We varied the slowstart threshold in the
range of [20%, 80%]. Figure 15 shows the median, 5th , and 95th per-
centile job completion times of all the jobs in JobPacker with differ-
ent slowstart thresholds. We see that when the slowstart threshold
is in the range of [50%, 80%], the job completion times are almost
the same, indicating that the slowstart threshold in JobPacker can
be set to a sufficient large range to achieve the best performance.
On the other hand, when the slowstart threshold is set to ≤ 40%, the
job completion times slightly increase. In these cases, the reduce
tasks of the jobs hog up the resources that can be allocated to the
tasks of other jobs for too long because of low slowstart thresholds.

0

400

800

1200

1600

0.2 0.3 0.4 0.5 0.6 0.7 0.8Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Slowstart threshold

Figure 15: Varying slowstart threshold.

0

500

1000

1500

2000

0 0.5 1 1.5 2Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Over-provisioning ratio

Figure 16: Varying over-provisioning ratios.

5.4.4 Over-provisioning ratio. In the previous experiments when
there are both recurring and ad-hoc jobs, we set the over-provisioning
ratio to 1.0. In this experiment, we varied the over-provisioning
ratio in the range of [0, 2] and used the same other settings as
in Section 5.3. Figure 16 shows the median, 5th , and 95th per-
centile job completion times of all the jobs in JobPacker with dif-
ferent over-provisioning ratios. The figure indicates that if the
over-provisioning ratio is too low, the job completion times are
significantly affected, since the planned resources are not sufficient
to complete the recurring and ad-hoc jobs. The performance is not
affected much when the over-provisioning ratio becomes larger.
This is because in real cluster running, the over-provisioned re-
sources can be used to run the ad-hoc jobs and other recurring jobs
planned on the same resources.

5.4.5 OCS reconfiguration interval. We varied the OCS reconfigu-
ration interval in the range of [0.1s, 3s]. Figure 17 shows the median,
5th , and 95th percentile job completion times of all the jobs in Job-
Packer with different OCS reconfiguration intervals. We see that
varying the reconfiguration interval only has minimal impacts on
the performance of JobPacker. Even setting the reconfiguration
interval to 3s can achieve a good performance (38% reduction on
median job completion time compared with F-Hybrid). This is be-
cause JobPacker aggregates the shuffle traffic to only a few racks,
which generates sparse and skew demand matrices for OCS. This
allows OCS to be reconfigured less frequently.

5.4.6 The number of sub-batches. In the batch scenario, we divide
the entire batch into several sub-batches and sort each sub-batch in-
dividually. In this experiment, we varied the number of sub-batches
B in the range of [1, 20]. Figure 18 shows the makespans in Job-
Packer with different number of sub-batches. All the results are
normalized by the results of F-Hybrid. As B increases from 1 to 5,
the makespan decreases, since placing the jobs into multiple sub-
batches can prevent high competition of resource. However, when
B ≥ 5, increasing B only slightly impacts the performance. This is
because dividing the workload into 5 sub-batches is sufficient to
prevent the network contention from extremely shuffle-heavy jobs
at the same time.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zhuozhao Li and Haiying Shen

0

500

1000

1500

0.1 0.3 0.5 1 3Jo
b

co
m

pl
et

io
n

tim
e

(s
)

OCS reconfiguration interval (s)

Figure 17: Varying OCS reconfiguration intervals.

0
0.2
0.4
0.6
0.8

1

1 3 5 10 20

M
ak

es
pa

n

Number of sub-batches

Figure 18: Varying the number of sub-batches.

6 CONCLUSION
We descibed JobPacker to fully takes advantage of OCS in Hybrid-
DCN to improve job performance. JobPacker aggregates the data
transfers of a job to use OCS effectively. Based on the predictable
characteristics of recurring jobs, JobPacker has an offline scheduler
to find out all feasible (map-width, reduce-width) pairs for every
recurring job that can use OCS effectively while achieving sufficient
parallelism, find out the best (map-width, reduce-width) pair with
the shortest job completion time, and generate the global schedule
including which racks and the sequence to run the recurring jobs
that yields the best performance. The offline scheduler also has a
new sorting method to prioritize the recurring jobs to prevent high
resource contention while fully utilizing cluster resource. Based
on the offline schedule, a real-time scheduler places input data and
schedules the recurring jobs, and schedules non-recurring jobs to
idle resources that are not assigned to recurring jobs. We evaluated
JobPacker using large-scale simulation and small-scale emulation
on GENI based on production workload, which demonstrates its
higher performance in comparison with other schedulers. In the
future work, we would like to consider dependency among jobs in
the job scheduling.

ACKNOWLEDGMENT
This researchwas supported in part by U.S. NSF grants NSF-1827674,
CCF-1822965, OAC-1724845, CNS-1733596 and ACI-1661378, and
Microsoft Research Faculty Fellowship 8300751.

REFERENCES
[1] 2019. Fair Scheduler. https://hadoop.apache.org/docs/r2.7.2/hadoop

-yarn/hadoop-yarn-site/FairScheduler.html.
[2] 2019. GENI. https://www.geni.net.
[3] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. 2012. Re-

optimizing data-parallel computing. In Proc. of USENIX ATC.
[4] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar. 2014. Shuf-

fleWatcher: Shuffle-aware Scheduling in Multi-tenant MapReduce Clusters. In
Proc. of ATC.

[5] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y.
Chen. 2012. OSA: An optical switching architecture for data center networks
with unprecedented flexibility. In Proc. of NSDI.

[6] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. 2011. The Case for Evaluating
MapReduce Performance Using Workload Suites.. In Proc. of MASCOTS.

[7] Z. Li and H. Shen. 2017. Job Scheduling for Data-parallel Frameworks with
Hybrid Electrical/Optical Datacenter Networks. In Proceedings of the Symposium
on Cloud Computing, Poster. 662–662.

[8] L. Cheng, J. Murphy, Q. Liu, C. Hao, and G. Theodoropoulos. 2018. Minimiz-
ing Network Traffic for Distributed Joins Using Lightweight Locality-Aware
Scheduling. In European Conference on Parallel Processing.

[9] L. Cheng, Y. Wang, Y. Pei, and D. Epema. 2017. A coflow-based co-optimization
framework for high-performance data analytics. In Proc. of ICPP. IEEE.

[10] J. Dean and S. Ghemawat. 2004. MapReduce: Simplified Data Processing on Large
Clusters. In Proc. of OSDI.

[11] Z. Li and H. Shen. 2017. Measuring scale-up and scale-out hadoop with remote
and local file systems and selecting the best platform. IEEE Transactions on
Parallel and Distributed Systems 28, 11 (2017), 3201–3214.

[12] J. Edmonds. 1965. Paths, trees, and flowers. Canadian Journal of mathematics 17,
3 (1965), 449–467.

[13] Z. Li and H. Shen. 2015. Designing a hybrid scale-up/out hadoop architecture
based on performance measurements for high application performance. In Pro-
ceedings of International Conference on Parallel Processing. 21–30.

[14] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y.
Fainman, G. Papen, and A. Vahdat. 2010. Helios: A Hybrid Electrical/Optical
Switch Architecture for Modular Data Centers. In Proc. of SIGCOMM.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. 2012. Jockey:
guaranteed job latency in data parallel clusters. In Proc. of EuroSys.

[16] R. L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM journal
on Applied Mathematics 17, 2 (1969), 416–429.

[17] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. 2014. Multi-
resource packing for cluster schedulers. In Proc. of SIGCOMM.

[18] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. 2016. Altruistic
Scheduling in Multi-Resource Clusters. In Proc. of OSDI.

[19] Z. Li and H. Shen. 2016. Performance measurement on scale-up and scale-
out hadoop with remote and local file systems. In 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 456–463.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P.
Patel, and S. Sengupta. 2009. VL2: a scalable and flexible data center network. In
Proc. of SIGCOMM.

[21] X. S. Huang, X. S. Sun, and T. Ng. 2016. Sunflow: Efficient Optical Circuit
Scheduling for Coflows. In Proc. of CoNext.

[22] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar. 2015.
Network-Aware Scheduling for Data-Parallel Jobs: Plan When You Can. In Proc.
of SIGCOMM.

[23] Z. Li and H. Shen. 2019. Co-scheduler: Accelerating Data-Parallel Jobs in Data-
center Networks with Optical Circuit Switching. In Proc. of ICDCS. IEEE.

[24] Z. Li, H. Shen, W. Ligon, and J. Denton. 2017. An exploration of designing a
hybrid scale-up/out hadoop architecture based on performance measurements.
IEEE Transactions on Parallel and Distributed Systems 28, 2 (2017), 386–400.

[25] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M.
Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren. 2015. Sched-
uling techniques for hybrid circuit/packet networks. In Proc. of CoNext.

[26] V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum. 2013. Flowflex: Malleable
scheduling for flows of mapreduce jobs. In Proc. of Middleware.

[27] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fain-
man, G. Papen, and A. Vahdat. 2013. Integrating Microsecond Circuit Switching
into the Data Center. In Proc. of SIGCOMM.

[28] Z. Li, H. Shen, and A. Sarker. 2018. A network-aware scheduler in data-parallel
clusters for high performance. In Proc. of CCGrid. IEEE, 1–10.

[29] H. Shen and Z. Li. 2016. New bandwidth sharing and pricing policies to achieve
a win-win situation for cloud provider and tenants. IEEE Transactions on Parallel
and Distributed Systems 27, 9 (2016), 2682–2697.

[30] H. Shen, L. Yu, L. Chen, and Z. Li. 2016. Goodbye to fixed bandwidth reserva-
tion: Job scheduling with elastic bandwidth reservation in clouds. In 2016 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 1–8.

[31] J. Turek, J. L. Wolf, and P. S. Yu. 1992. Approximate algorithms scheduling
parallelizable tasks. In Proc. of SPAA.

[32] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B.
Reed, and E. Baldeschwieler. 2013. Apache hadoop yarn: Yet another resource
negotiator. In Proc. of SOCC.

[33] G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and M.
Ryan. 2010. c-Through: Part-time optics in data centers. In Proc. of SIGCOMM.

[34] M. Zaharia, D. Borthakur, S. Sen, K. Elmeleegy, S. Shenker, and I. Stoica. 2010.
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In Proc. of EuroSys.

[35] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. 2012. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc. of NSDI.

	Abstract
	1 Introduction
	2 Background
	2.1 Hadoop MapReduce
	2.2 Hybrid-DCN
	2.3 Opportunity

	3 Related Work
	4 Design of JobPacker
	4.1 System Architecture
	4.2 Shuffle Data Aggregation
	4.3 Offline Scheduler
	4.4 Real-time Scheduler

	5 Performance Evaluation
	5.1 Traces and Settings
	5.2 Experimental Results
	5.3 Mix of Ad-hoc and Recurring Jobs
	5.4 Sensitivity Analysis

	6 Conclusion
	References

