
Co-scheduler: Accelerating Data-Parallel Jobs in
Datacenter Networks with Optical Circuit Switching

Zhuozhao Li
Department of Computer Science

University of Chicago
Email: zhuozhao@uchicago.edu

Haiying Shen
Department of Computer Science

University of Virginia
Email: hs6ms@virginia.edu

Abstract—The optical circuit switch (OCS) in recently pro-
posed hybrid electrical/optical datacenter networks (Hybrid-
DCN) can only be used to transfer large flows (i.e., flows
with a large size of data). Current job schedulers for data-
parallel frameworks are not suitable for Hybrid-DCN, since they
neither place tasks to aggregate data traffic to take advantage
of OCS nor schedule tasks to minimize the Coflow completion
time (CCT). In this paper, we propose Co-scheduler, a job
scheduler for data-parallel frameworks that aims to improve
job performance by attempting to place the tasks of a job to
aggregate enough data traffic to take advantage of OCS and
minimize the CCT in Hybrid-DCN. Specifically, to achieve this
goal, for each job, Co-scheduler computes guidelines on the
number of racks to place the job’s input data and the job’s
map and reduce tasks, and schedules the map and reduce tasks
of the job based on the computed guidelines. The evaluation
demonstrates that compared to the state-of-the-art schedulers,
Co-scheduler achieves performance improvements on makespan,
average job completion time, and average CCT by up to 51.2%,
54.6% and 73.6%, respectively.

I. INTRODUCTION

In the past decade, many organizations (e.g., Facebook,
Google, Microsoft, and Yahoo!) have deployed data-parallel
frameworks such as MapReduce [1] and Spark [2] to process
the increasingly large volume of data. These frameworks often
involve network-intensive stages (e.g., shuffle in MapReduce)
that transfer a large amount of data in their workflows. For
example, 60% and 20% of the jobs on the Yahoo! [3] and
Facebook MapReduce clusters [4] are shuffle-heavy jobs (i.e.,
jobs with a large shuffle data size). However, the network
from Top-of-Rack (ToR) switch to the core switch in current
datacenter commonly have link oversubscription ranging from
3:1 to 20:1 [1, 4–7]. As a result, these frameworks often suffer
from cross-rack network bottlenecks.

To supply sufficient network bandwidth, several studies
proposed hybrid electrical/optical datacenter networks (in short
Hybrid-DCN) [8–11], which augment the traditional electrical
packet switch (EPS) datacenter network with an optical net-
work using optical circuit switch (OCS), as shown in Figure 1.
The ToR switches are connected with a core EPS and an
OCS. Compared with EPS, OCS has significant lower capital
expenditures (CapEx) and operating expenditures (OpEx) [8–
11]. However, OCS has a port constraint: one input port can
setup only one circuit to an output port at a time. To change

EPS Core
Switch

Servers

ToR
Switch

OCS

Fig. 1: Architecture of Hybrid-DCN. The link rate between
ToR and core EPS is bwe, while the link rate between ToR
and OCS is bwo

the input-to-output connection, one needs to reconfigure the
circuit connection in OCS, which results in a reconfiguration
delay on the order of µs-to-ms [8, 9]. Such a delay is too large
for a small flow (i.e., flows with a small data size). Thus, in
Hybrid-DCN, OCS is used only for large data (e.g., 1.125GB)
transfers between racks so that the µs-to-ms reconfiguration
delay becomes negligible [8, 9, 12].

In the advanced Hybrid-DCN, the job schedulers for data-
parallel jobs must keep pace to meet the needs of such hybrid
networks due to the following two reasons.

First, existing schedulers in data-parallel frameworks fail to
aggregate enough data traffic to take advantage of OCS (take
advantage of OCS in short later in the paper) to accelerate data
transfers. On the one hand, a large group of schedulers (e.g.,
Fair [13] and Delay [4]) schedule the tasks of a job among all
the racks, which generates many small flows that cannot be
sent via OCS. On the other hand, another group of schedulers
(e.g., ShuffleWatcher [6], Corral [14] and NAS [15]), so called
network-aware schedulers, schedule the tasks of a job to avoid
using the network to reduce the cross-rack network traffic
and cross-rack congestion, rather than taking advantage of
the high-bandwidth OCS. Thus, we need to develop new job
schedulers to aggregate the data transfers of jobs to reach
the elephant flow threshold (e.g., 1.125GB), so that the data
transfers can take advantage of OCS.

Second, current data-parallel applications often have com-
munication between different computation stages, and a com-
munication stage finishes only after all of its flows have com-
pleted. Recent studies [16, 17] proposed Coflow to represent

such a collection of parallel flows in a job. For example, the
shuffle between the map tasks and reduce tasks in MapReduce
is a Coflow. The completion time of a Coflow (CCT) is defined
as the time duration between the beginning of its first flow and
the completion of its last flow. Existing Coflow schedulers in
OCS [18] attempt to minimize the CCTs of jobs by optimally
prioritizing the Coflows, assuming that the placement of
the job tasks is fixed and determined by the job scheduling
algorithm of the cluster. However, current job scheduling
algorithms do not schedule the tasks of jobs in a way that
attempts to minimize the CCTs, which may lead to poor job
performance. With different job scheduling algorithms, the
source-destination pairs of the flows may vary significantly and
hence the CCT of a job may also vary significantly. Therefore,
we aim to further improve the job performance by designing
job scheduler to minimize CCTs of the jobs.

In this paper, we propose Co-scheduler, a job scheduler
that aims to improve job performance by enabling the data
transfers of jobs to take advantage of OCS and placing the
tasks to minimize CCTs of the jobs. While we present our
designs and results in the Hadoop MapReduce framework, the
ideas can be generalized to any data-parallel frameworks.

Co-scheduler consists of four main steps.
• For each job, Co-scheduler first computes a guideline on
the number of racks to place the job’s input data and to run
the job’s map tasks, so that the job can potentially take full
advantage of OCS to transfer its data.
•When the map tasks of the job complete, based on the
map output distribution, Co-scheduler then finds out all the
possible schedules of the reduce tasks of the job. Each possible
schedule includes the number of racks to run the job’s reduce
tasks that enables the data transfers of the job to take advantage
of OCS, and the number of reduce tasks to place on each of
the racks that minimizes CCT of the job.
•After finding out all the possible schedules for the job that
indicate which racks to run the reduce tasks, Co-scheduler
selects the best schedule among them so that the reduce
tasks of the job can finish the data fetching and start the
computation stage the earliest, and hence the job completion
time is minimized.
• Finally, Co-scheduler schedules the job based on its guideline
of map tasks and the best schedule of the reduce tasks, which
enables the data transfers of the job to take advantage of OCS
in Hybrid-DCN and minimizes CCT of the job.

We have evaluated Co-scheduler through a trace-driven
simulation. The experimental results demonstrate that Co-
scheduler outperforms the state-of-the-art schedulers by up to
51.2% makespan, 54.6% average job completion time, and
73.6% average CCT.

The rest of the paper is organized as follows. Section II
introduces the Hadoop and Hybrid-DCN. Section III presents
motivation examples. Section IV introduces the main design of
Co-scheduler. Section V presents the performance evaluation.
We discuss the related work in Section VI. Section VII
concludes this paper with remarks on our future work.

II. BACKGROUND

A. Hadoop MapReduce
A MapReduce job consists of map and reduce stages, which

contain multiple map and reduce tasks respectively. Each task
is processed by a container, which has a certain amount of
CPU and memory resource [14]. Each map task processes
one input data block and generates map output data (called
shuffle data). Each reduce task consists of two steps: shuffle
and reduce. In the shuffle, all shuffle data with the same key
on all map outputs is transferred to the same reduce task.

Hadoop YARN [19] is a popular open-source implementa-
tion of MapReduce [1]. YARN has a centralized scheduler,
which determines how to schedule the tasks of the jobs to the
containers of different nodes.

B. Hybrid-DCN
In this paper, we assume there are R racks in the clus-

ter and assume the same Hybrid-DCN architecture as in c-
Through [8]. As in [8, 9], we assume that only the flow with
size larger than the elephant flow threshold Te (empirically set
by network researchers [8, 9], e.g., 1.125GB) is sent via OCS;
otherwise, it communicates through EPS. We define shuffle-
heavy jobs as the jobs with shuffle data size no smaller than
the elephant flow threshold.

We abstract OCS as one non-blocking R-port switch (R
input ports and R output ports). Each port is connected to a
ToR switch and each ToR switch is connected to a rack of
machines. Since each input port of OCS can configure one
circuit to only one output port at a time, one rack can send
data via OCS to only one another rack at a time. To change the
rack to rack connection, OCS needs to reconfigure the circuit
with a fix time δ called reconfiguration delay.

We assume that circuit switching model of OCS is not-all-
stop model, as in [18]. In other words, during the reconfigu-
ration period δ, the communication stops only on the affected
racks, including the racks to be setup circuits, as well as the
racks to be torn down circuits.

C. Lower Bound of Coflow Completion Time with OCS
Assume there are R racks in the cluster. We present a

Coflow C by a traffic matrix C = (Cij), where Cij is the
size of the flow that needs to be transmitted from rack i to
rack j, i, j = 1, 2, ..., R. Note that Cij is required to be larger
than elephant flow threshold Te to use OCS. In OCS, to send
data from one rack to another rack, it requires reconfiguration
to setup the circuits. Thus, each flow incurs at least one
reconfiguration delay δ. The minimum time to transfer a flow
with size Cij is

tij =

{
Cij

BWOCS
+ δ, if Cij > 0

0, if Cij = 0
, (1)

where BWOCS is the link bandwidth of OCS. We can derive
that the CCT lower bound in OCS is

T (C) = max

max
i

∑
j

tij ,max
j

∑
i

tij

 . (2)

∑
j tij is the minimum time used to complete the flows sent

out from rack i, while
∑

i tij is the minimum time used to
complete the flows received by rack j. Thus, T (C) serves as
a lower bound CCT for Coflow C. In fact, previous work [20]
showed that Coflow C can be completed in exactly T (C) time
by using the optimal clearance algorithm in [21].

It is worth mentioning that the lower bound T (C) of a
Coflow is actually determined by the maximum data size sent
or received of a rack in the Coflow, according to Equation (2).

III. MOTIVATIONS AND CHALLENGES

A. Traffic Aggregation to Take Advantage of OCS

To take full advantage of OCS in Hybrid-DCN, we need to
schedule the tasks so that the network traffic between map and
reduce stages is aggregated enough to reach the elephant flow
threshold. To achieve this, we have the first goal of designing
the job scheduler for Hybrid-DCN:

Goal-1: The job scheduler needs to aggregate the data
transfer by scheduling the map and reduce tasks of a job on
only a few racks.

B. Maximizing the Number of Circuits for Coflow

The scheduling of the tasks of a job impacts its CCT, since
it affects the number of circuits that can be used to transfer the
Coflow of the job. Intuitively, if a job uses more circuits, given
the same size of shuffle data to transfer, it takes shorter time
to complete the Coflow transfer of the job. Let us consider the
following example.

For example, assume there are two jobs Job1 and Job2.
Job1 has 9 map tasks and 3 reduce tasks, and Job2 has 15
map tasks and 3 reduce tasks. Each map task needs to transfer
1 unit data size to each reduce task. In each unit time, OCS
can transfer 1 unit of data. Recall that the OCS reconfiguration
delay is δ. The cluster has three racks, and each rack can
communicate with one another rack at a time.

To schedule the Coflows, Sunflow [18] is used here. Specif-
ically, Sunflow uses shortest Coflow first algorithm (i.e.,
shortest lower bound CCT as introduced in Section II-C) and
allows the Coflow with higher priority to first use the circuits
non-preemptively. Thus, in this example, the Coflow of Job1
has a higher priority.
•Case1 (Figure 2(a)): The map and reduce tasks of Job1 and
Job2 are scheduled as shown in Figure 2(a). In Case1, the
CCTs of Job1 and Job2 are 12+2δ and 20+3δ, respectively.
•Case2 (Figure 2(b)): The map and reduce tasks of Job1 and
Job2 are scheduled as shown in Figure 2(b). In Case2, the
CCTs of Job1 and Job2 are 6+2δ and 16+3δ, respectively.
We see that the CCTs of the two jobs in Case2 are shorter
than the CCTs in Case1, which further demonstrates that the
scheduling of the tasks of a job impacts its CCT. To shorten
the CCT of a job, the ideal way is to distribute the data transfer
of the job to more racks so that more circuits can be used to
transfer data concurrently. To achieve this, we have the second
goal of designing the job scheduler for Hybrid-DCN:

Goal-2: The job scheduler needs to distribute the data
transfer of a job to as more racks as possible, so that more

circuits can be used to transfer data concurrently to shorten
the CCT of the job.

C. Summary and Issues

Takeaway: We need to design a job scheduler to (i) place
the map and reduce tasks of each job on a few racks to
aggregate the data transfer to take advantage of OCS; and
(ii) allow each job to transfer its data using as more circuits
as possible to minimize the CCT.

Issues: There are several issues we need to resolve in
designing such a job scheduler.
• I1: How many racks should the map tasks and reduce tasks
of a job be placed?
• I2: How many tasks should we place on each rack to
minimize the CCT of a job?
• I3: How to select the set of racks to place the tasks of a job?

In the next section, we present the Co-scheduler design to
solve the issues.

IV. THE DESIGN OF CO-SCHEDULER

A. Rethinking the Overlapping of Map and Reduce Tasks

In the conventional Hadoop framework, the shuffle data
transfers of a job can start immediately after its reduce tasks
are scheduled while there are still map tasks of the job running.
The reduce tasks cannot start until all map tasks complete.
However, while this mechanism can shorten the execution time
of each single job, it also has a significant drawback. That is, in
a highly loaded cluster, this mechanism results in low resource
utilization since the reduce tasks take up the containers that
could otherwise process other jobs.

With the use of high-bandwidth OCS, is it still appropriate
to use this overlapping mechanism? We argue that the only
advantage of this overlapping mechanism no longer exists, if
we could enable the data transfers of the jobs to take advantage
of OCS in Hybrid-DCN. On the one hand, shuffle-heavy jobs
can exploit OCS to transfer data and hence the transfer delay
is relatively small. On the other hand, though shuffle-light jobs
cannot exploit OCS, their transfer delay is relatively small even
using EPS since they have small size of shuffle data.

Therefore, we propose to start scheduling the reduce tasks of
a job after all the map tasks of the job are completed. In addi-
tion, unlike conventional Hadoop that starts the corresponding
shuffle data transfer immediately after each corresponding
reduce task is assigned containers, we further propose to start
the shuffle data transfer of the job after all the reduce tasks
are assigned to containers. This new mechanism has several
advantages:
• It disallows the reduce tasks from taking up the containers

that could be used to process the tasks of other jobs.
• It facilitates the aggregation of data transfer within a job

to exploit OCS. Reduce tasks on the same rack can fetch
shuffle data from map tasks simultaneously using OCS.

• Since reduce tasks are scheduled after all the map tasks
of the job complete, the job scheduler can exploit the
information of map output distribution to better schedule
the reduce tasks to take advantage of OCS.

Job1

Rack1

Rack2

Rack3

t

2

2

6 + δ 12 + 2δ

Job2

OCS reconfiguration

3

3 + δ

Job1

3

9 + 2δ

3

1

1

16 + 2δ

1

20 + 3δ

3

14 + 2δ

3

18 + 3δ

map red
Rack1 3 0
Rack2 3 2
Rack3 3 1

map red
Rack1 5 2
Rack2 5 0
Rack3 5 1

(a) Case1

Job2

map red
Rack1 3 1
Rack2 3 1
Rack3 3 1

map red
Rack1 5 1
Rack2 5 1
Rack3 5 1

Rack1

Rack2

Rack3

t

2

6 + 2δ

3

3 + δ

1

3

1

2

3

1

11 + 2δ

2

2

3

1

16 + 3δ

Job2

Job1

j Transmitting to Rack j

Duration of transmission

(b) Case2

Fig. 2: Motivation example. The box with number j indicates that a circuit to rack j is configured on the corresponding rack.

B. Overview of Design

In this section, we describe a high-level overview of Co-
scheduler. To solve the issues in Section III-C, Co-scheduler
consists of four main components:
• Input Data Placement and Map Task Scheduling Guide-
line (Section IV-C). When the input data of a job is submitted
to the cluster, Co-scheduler computes the input data place-
ment and map task scheduling guideline for the job, which
determines how many racks to place its input data on and
how many racks to run its map tasks on, so that the job can
potentially take advantage of OCS to transfer its shuffle data.
This component is to solve issues I1 and I2.
•Determining Possible Schedules of Reduce Tasks (Sec-
tion IV-D). After the map tasks of a job complete, Co-
scheduler computes the possible schedules of its reduce tasks
that enable the data transfers of the job to take advantage of
OCS. The possible schedules are a set of {[Rred,D, CCT]},
where Rred is how many racks to run its reduce tasks on,
D indicates the number of reduce tasks to place on each of
the Rred racks, and CCT is the CCT with such placement of
reduce tasks. This component is to solve issues I1 and I2.
• Selecting the Best Schedule (Section IV-E). Next, for each
job, Co-scheduler uses a ExploreSchedule function to explore
each possible schedule (i.e., finding out how to place tasks
according to the possible schedule that yields the shortest job
completion time) and then selects the best schedule from all
the possible schedules. The best schedule includes which racks
to schedule the reduce tasks on so that the reduce tasks of the
job can start the earliest and hence the job completion time is
minimized. This component is to solve issue I3.
•OCS and Coflow Aware Scheduling (Section IV-F). Fi-
nally, Co-scheduler attempts to schedule each job following
the guideline of its map tasks and the best schedule of its
reduce tasks. This component is to solve issue I3.

C. Input Data Placement and Map Task Scheduling Guideline

As mentioned in Section III, in order to exploit the OCS, we
need to aggregate the data transfers of the job by placing both
of its map and reduce tasks on a few racks. Suppose Rdata,
Rmap and Rred are the number of racks to place the input
data, the map tasks and the reduce tasks, respectively. It is
expected that each map task can maintain data locality, which

means that the map task and its input data block are located
on the same rack. Thus, to run the map tasks of the job on
Rmap racks, we also need to place the input data blocks of
the job on Rmap racks, which indicates Rdata = Rmap.

In this section, we present the details of input data place-
ment and map task scheduling guideline, which computes a
guideline on how to place the input data and map tasks of each
submitted job. The guideline includes how to determine Rmap

(hence Rdata) and how to place the input data accordingly.
Determining Rmap. Let us denote Shuffle data size to Input
data size Ratio as SIR. Then, the shuffle data size of the job
equals Input ∗ SIR, where Input is the input data size. Our
current implementation initializes SIR to be 1.0 as in [6],
and dynamically updates the value as the Map phase of a
job progresses. This ratio could also be provided by the user
if known in advance, tracked from previous runs of the job,
or changed accordingly based on the workload characteristics
in the cluster. Many previous studies [14, 22–27] show that
cluster workloads contain a large number of recurring jobs,
whose job characteristics can be predicted with a small error
(e.g., 6.5% [14]).

Assume the map tasks and reduce tasks are evenly dis-
tributed to Rmap and Rred racks, to ensure that a job can
use OCS to transfer its data, it requires

Input ∗ SIR
Rmap ∗Rred

≥ Te, (3)

which means that the data size sent from any map rack to any
reduce rack must exceed the elephant flow threshold Te.

Moreover, based on Section III-B, we expect to use more
circuits to transfer data at a time so that the CCT of the job is
minimized. Since we can setup at most Rmap circuits for the
Rmap map racks and at most Rred circuits for the Rred reduce
racks, the number of circuits that can be used to transfer the
shuffle data of a job at a time is min (Rmap, Rred). As a result,
maximizing the number of circuits can be interpreted as

maximize min (Rmap, Rred) , (4)

Based on Equations (3) and (4), we have

(min (Rmap, Rred))
2 ≤ Rmap ∗Rred ≤

Input ∗ SIR
Te

.

(5)

Hence, the number of circuits that can be used is guaranteed
to satisfy

min (Rmap, Rred) ≤
√

Input ∗ SIR
Te

. (6)

Jointly considering Equations (5) and (6), we derive that the
“=” sign holds true only when Rmap = Rred.

Thus, the maximum number of circuits a job can use to
transfer its data is

√
Input∗SIR

Te
. We initialize Rmap =√

Input∗SIR
Te

, which ensures that the job has the potential
to use the maximum number of circuits to transfer its data.
Input data placement and map tasks scheduling. In
Hadoop, each data block has three replicas. Conventionally,
the input data blocks are placed randomly in the entire cluster
when the input data of the job is uploaded to the cluster. The
difference of Co-scheduler is that the input data blocks are
placed onto only Rdata racks.

To achieve this, we first randomly choose Rdata racks and
place the first replica of the input data blocks evenly onto the
Rdata racks. For the second and third replicas, we need to
randomly select two other sets of Rdata racks and place the
second and third replicas of the input data blocks evenly onto
the Rdata racks, respectively. The three sets of Rdata racks
are disjoint with each other (in total 3 ∗Rdata distinct racks).
Based on such an input data placement of the job, to achieve
data locality, we can schedule the map tasks of the job on
any Rmap racks selected from the three disjoint sets of Rdata

racks that contain the job’s input data (recall Rdata = Rmap).

D. Determining Possible Schedules of Reduce Tasks

In this section, we describe the details of how to compute
the possible schedules of reduce tasks of a job. The possible
schedules of reduce tasks refer to how many racks to run the
reduce tasks on to enable the data transfers of the job to take
advantage of OCS.

Recall in Section IV-A, we propose to start scheduling
the reduce tasks of a job after the last map task of the
job is completed. Thus, we can know the distribution of
the map output sizes on Rmap racks of the job, as well as
whether the job is shuffle-heavy or not. Notice that if any
SMi, i = 1, 2, ..., Rmap is smaller than Te, we can disregard
it in the computation because i) regardless of the reduce task
placement, the transfer of the map output data cannot take ad-
vantage of OCS due to its small size, and ii) the small amount
of map output data only takes a short time to transfer even
with EPS. Therefore, without loss of generality, we assume
that all SMi, i = 1, 2, ..., Rmap are greater than elephant flow
threshold Te. We use {SM1, SM2, ..., SMRmap

} to denote the
distribution of map output data sizes, sorted in ascending order.

Problems: Given a distribution of map output data size
{SM1, SM2, ..., SMRmap

} on Rmap racks of a job, Co-
scheduler needs to solve the following two problems.
• First, determining all the possible values of Rred that enable
the data transfers of the job to take advantage of OCS.
• Second, for each possible value of Rred, finding out the
number of reduce tasks to be placed on each of the Rred

racks so that the CCT is minimized, denoted as D =
{d1, d2, ..., dRred

}, where di indicates the number of reduce
tasks placed on a rack.
Determining all the possible values of Rred. Obviously, the
lower bound of Rred is 1. As to the upper bound, since we
need to guarantee that the sizes of as many flows as possible
of the job are larger than the elephant flow threshold Te, we
have

Rred ≤ b
SM1

Te
c. (7)

Here, we use SM1 because it is the minimum among
{SM1, SM2, ..., SMRmap

} (sorted in ascending order as
aforementioned). Setting Rred to a value smaller than
b SM1

Te
c guarantees all the flows can use OCS. Thus, the

possible Rred is in the range of [1, b SM1

Te
c].

Finding the placement D for each possible Rred that
minimizes CCT and the corresponding CCT. For each
possible Rred in the range of [1, α], we use the following
algorithm to find its corresponding D. First, for each of the
Rred racks, we keep placing the reduce tasks to each rack, until
the data transfers are aggregated sufficiently, i.e., the smallest
map output data SM1 can be sent via OCS to each of these
Rred racks. Based on Equations (1) and (2), we expect to
minimize the lower bound T (C), which is determined by the
maximum data size sent or received of a rack. Thus, we place
the remaining reduce tasks one by one to the rack that has
the smallest data size among the Rred. By doing this, the
maximum data size sent or received of a rack is minimized.
Using this placement can enable the data transfers of the job
to take advantage of OCS, while minimizing CCT. The CCT
can be obtained based on Equations (1) and (2).
Output. For each job, Co-scheduler outputs a set of possible
schedules {[Rred,D, CCT], ...} to schedule the reduce tasks,
and selects the best schedule among them, which will be
introduced in the next section.

E. Selecting the Best Schedule

In this section, we present the details of how to select best
schedule, as shown in Algorithm 1. Given all the possible
schedules of the reduce tasks of a job in Section IV-D, Co-
scheduler uses a function called ExploreSchedule to select the
best schedule (lines 1-13), so that the reduce tasks can finish
the data transfers and start their computation the earliest, and
hence the job completion time is minimized.

Specifically, the input of ExploreSchedule is a possible
schedule [Rred,D, CCT], and the output of ExploreSchedule
includes the selection of a set of racks for this possible
schedule and the estimated time when all the reduce tasks
complete their shuffle data transfer. The estimated time in
ExploreSchedule function is based on the estimated remaining
processing time Trem of every running task in the cluster.

Specifically, we exploit a linear model to estimate Trem
of every running task periodically. In Hadoop, the status of
every running task, including the time elapsed telapsed and the
progress P of the task, is reported periodically. We estimate
Trem using a simple heuristic:

Trem = telapsed ∗
1− P
P

. (8)

This heuristic assumes that the tasks make progress at a
constant rate. Previous studies [28, 29] show that such a model
works well in practice and the estimation error of Trem is
within 2.9% of the actual completion time.

Algorithm 1 Pseudocode of selecting the best schedule.

1: function EXPLORESCHEDULE([Rred,D, CCT])
2: Sort D in descending order
3: for di in D do
4: for Rack R in all non-selected racks do
5: TR = the time to schedule di reduce tasks based

on Trem
6: end for
7: ti = the smallest TR
8: ri = the rack with ti, and mark ri as selected rack
9: . selected rack cannot be used again in the search

10: end for
11: tmax = max{t1, t2, ..., tRred

}
12: return selected racks R = {r1, r2, ..., rRred

} and
CCT + tmax

13: end function
14:
15: for P in all possible schedules do
16: RP , tP = ExploreSchedule(P)
17: end for
18: Select best schedule as RB that has the smallest tp.

In the following, we describe the details of ExploreSchedule
function. Without loss of generality, let us assume the sorted
D (descending order) is {d1, d2, ..., dRred

} (line 2). Assume
that the rack to run di reduce tasks is ri and the estimated
time when sufficient containers on rack ri are available is ti
(namely released time of ri). Thus, we have the selected racks
R = {r1, r2, ..., rRred

} and their estimated released times T =
{t1, t2, ..., tRred

} to run {d1, d2, ..., dRred
} reduce tasks. The

problem is interpreted as selecting the set of racks R in the
cluster with the goal

minimize max{t1, t2, ..., tRred
}. (9)

Given a possible schedule [Rred,D = {d1, ..., dRred
}, CCT],

the ExploreSchedule function first checks which rack in the
cluster is the earliest rack that has available containers to
run d1 reduce tasks and select this rack as r1. Similarly, Ex-
ploreSchedule selects the racks r2, ..., rRred

for the subsequent
d2, ..., dRred

reduce tasks using the same method (lines 3-10).
Finally, it outputs the selected racks R = {r1, r2, ..., rRred

}
and the estimated time of when all reduce tasks complete
their shuffle data transfers, i.e., CCT + tmax, where tmax =
max{t1, t2, ..., tRred

} (lines 11-12).
We can prove that such an algorithm of ExploreSchedule can

always find the optimal solution that matches the schedule.

Proof. Without loss of generality, assume that ti =
max{t1, t2, ..., tRred

}. First, rack ri cannot be replaced by

any racks in {ri+1, ..., rRred
} or any other racks in the

cluster (i.e., R/{r1, ..., rRred
}), since their released times of

di containers are certainly larger than ti (otherwise ri will
not be selected ro run di reduce tasks). Second, let us switch
any rack rj in {r1, ..., ri−1} with ri, which means that dj
reduce tasks are scheduled to rack ri while di reduce tasks
are scheduled to rack rj . In this case, since dj ≥ di (recall
D = {d1, d2, ..., dRred

} is in descending order), the released
time of ri to run dj reduce tasks is no smaller than ti, which is
the released time of ri to run di reduce tasks. Hence, no matter
what selection of racks other than R = {r1, r2, ..., rRred

}, ti
will be larger.

Algorithm 2 Pseudocode of OCS and Coflow aware schedul-
ing.

1: Sort users based on fairness policy
2: for each container c in all empty containers do
3: Select the first user from the user list and select a task

based on the following order:
4: • The reduce task from a shuffle-heavy job whose

best schedule contains the current rack
5: • The map task from a shuffle-heavy job whose

data is on this rack and whose map tasks has been
placed on fewer than Rmap racks

6: • The reduce task from a non-shuffle-heavy job
7: • Any map task from a non-shuffle-heavy job
8: • Any available reduce task
9: • Any available map task

10: end for

After Co-scheduler applies ExploreSchedule to all the pos-
sible schedules of a job, it selects the best schedule as the
schedule that leads to the smallest CCT + tmax (lines 15-18).

F. OCS and Coflow Aware Scheduling

We present the details of OCS and Coflow aware scheduling,
which is invoked when there are available containers in the
cluster. Specifically, when a container on a rack is available,
Co-scheduler selects the first user based on the fairness policy
in [4] and schedules a task from the user to the container fol-
lowing Algorithm 2. Though we assume Co-scheduler follows
fairness here, other policies in [30, 31] can also be applied.

When a specific container is available, Co-scheduler sched-
ules the tasks in the order above considering the factors below:
• Higher priorities are given to the tasks from a shuffle-

heavy job that follows the guideline of the map tasks or
the best schedule of the reduce tasks (lines 4-5), which
enables the shuffle-heavy job to take advantage of OCS
and to minimize CCT of the jobs.

• If a map or reduce task from shuffle-heavy jobs that
follows the guideline or best schedule cannot be found,
higher priorities are given to the tasks from non-shuffle-
heavy jobs (lines 6-9). This is because scheduling tasks
of shuffle-heavy jobs will violate the guideline and the
best schedule of the shuffle-heavy jobs, which prevents
them from using OCS.

V. PERFORMANCE EVALUATION

In this section, we evaluate Co-scheduler using simulation
with workload traces drawn from production traces.

A. Experimental Setting

Workloads. The workload traces we used were from the
SWIM Facebook workloads [3]. Since the workload traces
miss important information such as task running time, we first
replayed all the jobs in the traces (using the tools provided
in the same project [3]) one by one on a single-node Hadoop
YARN cluster and then recorded the necessary information for
every job. We used this recorded log as the workload traces
for simulation.

Simulation. We built a trace-driven flow-level event simu-
lator with different job schedulers. In the simulation, there
were 600 servers, organized into 60 racks with 10 servers
each. Each server can run up to 20 tasks and had 10Gbps
network bandwidth. The Hybrid-DCN topology was the same
as in Figure 1. The link rate between the ToR switch and core
EPS was 10Gbps, which yields a 10:1 oversubscription ratio.
The ToR and OCS were always connected with 100Gbps link.
We ran 1000 jobs selected from the workload. The number
of users was set to 20 and the jobs were randomly assigned
to the users. The elephant flow threshold was set to 1.125GB,
which is inferred empirically from previous studies [9, 18, 32].
The reconfiguration delay of OCS was set to 10ms, which is
a typical delay of a 3D-MEMS OCS [9].

Baselines. We compared Co-scheduler with two baselines.
(1) Fair scheduler [13] (Fair in short) is the most widely

used scheduler in current production clusters [13], and it
assigns containers to jobs so that each job roughly receives
an equal share of containers over time.

(2) Corral [14] places the map and reduce tasks of the same
job on the same set of racks to reduce the cross-rack shuffle
data transfer.

We used Sunflow [18] as the Coflow scheduling algorithm
for all the schedulers. Specifically, Sunflow uses the shortest
Coflow first algorithm (i.e., shortest lower bound CCT as
introduced in Section II-C) and allows the Coflow with higher
priority to use all the circuits non-preemptively.

Metrics. We used the three metrics below for the evaluation.
(1) Makespan: Makespan is the time to finish all the jobs

in the workload.
(2) Average job completion time (JCT): The JCT of a job

is the time from the arrival of the job until its completion.
Average JCT is the average of all the jobs’ JCTs.

(3) Average CCT: It is the average of all the jobs’ CCTs.
We define the performance comparison between Co-

scheduler and each baseline by

|MetricBaseline −MetricCo−scheduler|
MetricBaseline

, (10)

where MetricBaseline and MetricCo−scheduler are results for
a specific metric of the baseline scheduler and Co-scheduler,
respectively.

0
0.2
0.4
0.6
0.8

1
1.2

Makespan Average JCT Average CCT

Re
su

lt
s

Co-scheduler Fair Corral

0.49

0.78

0.45

0.69

0.26

0.58

(a) Performance metrics

0
20
40
60
80

100
120

OCS EPS

Pe
rc

en
ta

ge
 o

f t
ra

ffi
c Co-scheduler

Fair
Corral

0.92

0.080.02

0.98

0.67

0.33

(b) Percentage of traffic sent via OCS and EPS

Fig. 3: Experimental results.

B. Experimental Results

We present the experimental results below. The 1000 jobs
arrived uniformly at random in [0, 90] minutes. The exper-
iments were repeated 20 times and the average results were
reported. All the results were normalized by the results of Fair
scheduler for ease of comparison.

Figure 3(a) shows the makespan of the workload, average
JCT, and average CCT with different schedulers. We see that
Co-scheduler reduces the makespan of Fair and Corral by
51.2% and 37.2%, respectively. Co-scheduler achieves 54.6%
and 33.8% reduction on the average job completion time,
compared with Fair and Corral, respectively. Compared with
Fair and Corral, Co-scheduler has 73.6% and 54.8% reduction
on the average CCT, respectively.

All the results demonstrate superior performance of Co-
scheduler in terms of minimizing makespan, average job
completion time, and average CCT, since Co-scheduler ag-
gregates the shuffle data transfers of the shuffle-heavy jobs
to take advantage of OCS and schedules the tasks of jobs
to minimize the CCTs of the jobs. Co-scheduler outperforms
Fair since Fair does not intentionally aggregate the network
traffic to take full advantage of OCS in Hybrid-DCN. Co-
scheduler outperforms Corral because (i) Corral attempts to
place both map and reduce tasks on the same set of racks
to reduce shuffle network traffic, which imposes significant
container contentions on the set of racks; and (ii) Corral neither
aggregates the data transfers of the jobs to take full advantage
of OCS, nor attempts to maximize the number of circuits
to shorten the CCT. The above reasons can be demonstrated
through Figure 3(b), which shows the network traffic sent via
OCS and EPS. We see that 92.2% of the network traffic for
Co-scheduler is sent via OCS, while only 2.2% and 33.0% of
the network traffic for Fair and Corral is sent via OCS.

We also evaluate the performance improvements of Co-

0
0.2
0.4
0.6
0.8

1
1.2

Makespan Average JCT Average CCT

Re
su

lts

Co-scheduler Fair Corral

0.47

0.74

0.42
0.65

0.25

0.52

(a) Shuffle-heavy jobs

0
0.2
0.4
0.6
0.8

1
1.2

Makespan Average JCT Average CCT

Re
su

lts

Co-scheduler Fair Corral

0.66

0.90

0.59

0.85

0.40

0.76

(b) Non-shuffle-heavy jobs

Fig. 4: Performance improvements of shuffle-heavy and non-
shuffle-heavy jobs.

0
0.2
0.4
0.6
0.8

1
1.2

Makespan Average JCT Average CCT

Re
su

lts

Co-scheduler OCAS OCAS + DP-MTSG

0.49

0.88

0.45

0.86

0.26

0.81

Fig. 5: Effectiveness of different mechanisms.

scheduler over Fair and Corral for shuffle-heavy and non-
shuffle-heavy jobs, respectively. Figures 4(a) and 4(b) show
that Co-scheduler significantly improves the performance of
both shuffle-heavy and non-shuffle-heavy jobs. The shuffle-
heavy jobs have significant performance improvements be-
cause of the use of OCS in Co-scheduler. As the shuffle-heavy
jobs will finish faster and release the containers earlier, non-
shuffle-heavy jobs also finish earlier. We also observe that the
performance improvements of the shuffle-heavy jobs are more
significant than those of non-shuffle-heavy jobs, since non-
shuffle-heavy jobs are not dominated by the shuffle, which is
the main phase optimized by the Co-scheduler.

C. Effectiveness of Different Mechanisms

We also evaluate the impact of different mechanisms in
Co-scheduler: input data placement and map task placement
guideline (MTS), determining possible schedules of reduce
tasks (PSRT), selecting the best schedule (SBS), and OCS
and Coflow aware scheduling (OCAS). We only evaluate the
performance of OCAS, and MTS + OCAS, compared with
MTS + PSRT + SBS + OCAS, since (i) MTS cannot work
without OCAS; and (ii) PSRT and SBS cannot work without
MTS. Notice that OCAS is actually Fair when there is no
guideline of map and reduce tasks for shuffle-heavy jobs, and
MTS + PSRT + SBS + OCAS is actually Co-scheduler.

Figure 5 shows the contributions of different mechanisms,
in terms of the makespan of the workload, average JCT,
and average CCT. Compared with OCAS, MTS + OCAS
achieves performance improvements on makespan, average
job completion time, and average CCT by 12%, 14%, and
19%, respectively. This is because MTS attempts to place the
input data and map tasks in a limited number of racks, which
somehow aggregates the shuffle data transfers of the shuffle-
heavy jobs. However, MTS + OCAS results in much worse
performance than MTS + PSRT + SBS + OCAS (i.e., Co-
scheduler), since MTS + OCAS only aggregates the map tasks
but does not have a mechanism to aggregate the reduce tasks.
Without the guideline for reduce tasks of the jobs, MTS +
OCAS cannot enable all the shuffle-heavy jobs to use OCS,
leading to worse performance than Co-scheduler.

D. Sensitivity Analysis

In this section, we conduct several sensitivity tests of Co-
scheduler. The experiment settings are the same as Section
V-A unless otherwise specified.

Sensitivity to oversubscription ratio. In this experiment,
we varied the oversubscription ratio in the EPS network
from 3:1 to 20:1. All the results are normalized by the
results of Fair scheduler with oversubscription ratio of 10:1.
Figures 6(a), 6(b), 6(c) show the makespan, average JCT,
and average CCT versus different oversubscription ratio. We
see that the makespan, average job completion time, and
average CCT with Co-scheduler are not sensitive to the over-
subscription ratio. This is because with Co-scheduler, most
of the shuffle network traffic is sent via OCS and only a
small amount of network traffic is sent via EPS. As a result,
the variation of oversubscription ratio does not impact the
performance of Co-scheduler significantly. However, as the
oversubscription ratio increases, the performance of Fair and
Corral are significantly degraded, since with Fair and Corral,
a large portion of network traffic is still sent via EPS.

Sensitivity to estimation error of Trem. Recall that we
exploit the estimation of Trem to schedule the tasks in Co-
scheduler. In this experiment, we varied the error rate of the
estimation of Trem by up to 50% to see how Co-scheduler per-
forms. We define the estimation error rate as |real−estimation|

real ,
where real is the actual Trem of the job and estimatation is
the estimated Trem.

Figures 7(a), 7(b), 7(c) show the makespan, average JCT,
and average CCT versus the estimation error. The results of
Fair and Corral are not shown in the figures as they do not
rely on the estimation of Trem. We see that the performance
improvements of Co-scheduler on makespan and average job
completion time decrease as the error rate increases, while the
variation of the error rate has less significant impact on the
average CCT. This is because of two reasons. First, as the error
rate increases, Co-scheduler cannot accurately select the best
set of racks to run reduce tasks of the jobs, which degrades
the JCTs of the jobs (and hence makespan). Second, although
Co-scheduler cannot accurately select the best set of racks,

0
0.2
0.4
0.6
0.8
1

1.2
1.4

3:1 5:1 10:1 15:1 20:1

M
ak
es
pa

n
Co-scheduler Fair Corral

0.48 0.49 0.49 0.49 0.50

1.00
0.900.87

1.20
1.32

0.66 0.70
0.78

0.94 1.02

(a) Makespan

0
0.2
0.4
0.6
0.8

1
1.2
1.4

3:1 5:1 10:1 15:1 20:1

Av
er

ag
e

JC
T

Co-scheduler Fair Corral

0.45 0.45 0.45 0.46 0.47

1.00
0.880.85

1.16
1.28

0.58 0.61
0.69

0.79
0.9

(b) Average JCT

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

3:1 5:1 10:1 15:1 20:1

Av
er

ag
e

CC
T

Co-scheduler Fair Corral

0.26 0.26 0.26 0.27 0.27

1.00
0.820.78

1.26

1.49

0.37 0.42
0.58

0.74
0.93

(c) Average CCT

Fig. 6: Sensitivity analysis of oversubscription ratio.

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50%

M
ak
es
pa

n

0.49 0.51 0.58 0.56 0.59 0.63

(a) Makespan

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50%

Av
er

ag
e

JC
T

0.45 0.50 0.46 0.49 0.52 0.52

(b) Average JCT

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50%

Av
er

ag
e

CC
T

0.26 0.28 0.31 0.29 0.32 0.29

(c) Average CCT

Fig. 7: Sensitivity analysis of estimation of Trem.

selecting different possible schedules have slight variation on
the CCTs of the jobs.

However, even with high error rate, Co-scheduler still
outperforms Fair by 36% makespan and 46% average JCT, and
outperforms Corral by 18% makespan and 21% average JCT.
This demonstrates the robustness of Co-scheduler regarding
to the error in estimating Trem. Nevertheless, recent stud-
ies [28, 29] show that the estimation of Trem can be estimated
with a low error rate around 2.9%.

VI. RELATED WORK

Hybrid-DCN. Previous studies [8–10] have demonstrate the
feasibility of utilizing OCS in datacenter networks to improve
network capacity. One common assumption in these proposals
is that in a datacenter, a rack has elephant flows to only a few
racks and mice flows to other racks, which may not be true
for the data-parallel frameworks with current job schedulers. In
this paper, we aim to design a job scheduler to take advantage
of OCS in Hybrid-DCN to improve job performance.
Schedulers. Many researchers have designed various sched-
ulers [4, 6, 13–15, 26, 33–38] for data-parallel clusters to
improve job performance. Unfortunately, none of these sched-
ulers schedule tasks of the jobs to take advantage of Hybrid-
DCN. For example, the current state-of-the-art schedulers in
Hadoop YARN, Fair scheduler [13] and Delay scheduler [4],
focus on achieving high data locality and schedule the tasks of
the jobs across the entire cluster. Similarly, ShuffleWatcher [6]
aims to distribute the shuffle network traffic spatially among
different racks. The above schedulers totally disaggregate the
data transfers of the jobs, which fails to take advantage of
Hybrid-DCN to solve the network bottleneck to improve job
performance. Corral [14] is a network-aware scheduler that
attempts to reduce the data transfers between map and reduce
stages of a job by placing the map and reduce tasks of the

job together on the same racks. Although Corral somehow
aggregates the data transfers of the job to a fewer racks, it
causes significant container contention in these racks among
these map and reduce tasks.
Coflow. The Coflow abstraction was first documented in [16],
although the similar idea was present in previous paper [39].
The objective of Coflow scheduling is often to minimize the
average CCT. This problem is proved to be NP-hard [17, 18],
as it can be reduced from the concurrent open-shop scheduling
problem [40]. Thus, many heuristic scheduling algorithms [17,
18, 20, 41, 42] were proposed to minimize the CCT to improve
the performance of data-parallel jobs.

All of these techniques schedule the Coflows assuming that
the source-destination pairs of the Coflows are fixed. However,
current job scheduling algorithms do not schedule the tasks of
jobs in a way that attempts to minimize the CCTs, which
may lead to poor job performance. Different job scheduling
algorithms may result in different source-destination pairs of
the flows, which significantly impacts on the CCTs of jobs. In
this paper, we propose a job scheduler that improves the job
performance by coordinating the task placement to minimize
the CCTs in OCS.

VII. CONCLUSION

Existing job schedulers for data-parallel frameworks can-
not take advantage of Hybrid-DCN to accelerate the data
transfers of the jobs. Moreover, current job schedulers do
not schedule the tasks of jobs to minimize the CCTs of the
jobs. We propose Co-scheduler, a job scheduler that aims to
improve job performance by exploiting OCS in Hybrid-DCN
and minimizing the CCT. For each job, Co-scheduler first
computes a guideline to place its input data and map tasks,
which guarantees the potential of the job to take advantage
of OCS. Then, when the map tasks of a job complete, Co-

scheduler computes the possible schedules of the jobs, uses the
ExploreSchedule function to explore every possible schedule,
and selects the best schedule among all the possible schedules,
so that the reduce tasks finish their data fetching and start the
computation stage the earliest and hence the job completion is
minimized. Finally, Co-scheduler schedules each job following
the guideline of map tasks and the best schedule of reduce
tasks. Our trace-driven simulation shows that Co-scheduler
outperforms the state-of-the-art job schedulers in terms of
makespan, average job completion time and average CCT.
In the future, we will further explore using machine learning
techniques to automatically learn how to conduct scheduling
and investigate more sophisticated methods of estimating the
remaining processing time.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
NSF-1827674, CCF-1822965, OAC-1724845, ACI-1719397
and CNS-1733596, and Microsoft Research Faculty Fellow-
ship 8300751.

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in Proc. of OSDI, 2004.
[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
of NSDI, 2012.

[3] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance Using Workload Suites.” in Proc.
of MASCOTS, 2011.

[4] M. Zaharia, D. Borthakur, S. Sen, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. of EuroSys, 2010.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proc. of SIGCOMM, 2009.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“ShuffleWatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters,” in Proc. of ATC, 2014.

[7] H. Shen and Z. Li, “New bandwidth sharing and pricing policies to
achieve a win-win situation for cloud provider and tenants,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 9, pp.
2682–2697, 2016.

[8] G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-Through: Part-time optics in data centers,”
in Proc. of SIGCOMM, 2010.

[9] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid
electrical/optical switch architecture for modular data centers,” in Proc.
of SIGCOMM, 2010.

[10] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “OSA: An optical switching architecture for data
center networks with unprecedented flexibility,” in Proc. of NSDI, 2012.

[11] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proc. of SIGCOMM, 2013.

[12] Z. Li and H. Shen, “Job scheduling for data-parallel frameworks with
hybrid electrical/optical datacenter networks,” in Proceedings of the
Symposium on Cloud Computing, Poster, 2017, pp. 662–662.

[13] “Fair Scheduler,” https://hadoop.apache.org/docs/r2.7.2/hadoop
-yarn/hadoop-yarn-site/FairScheduler.html.

[14] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in Proc. of SIGCOMM, 2015.

[15] Z. Li, H. Shen, and A. Sarker, “A network-aware scheduler in data-
parallel clusters for high performance,” in 2018 18th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, 2018, pp. 1–10.

[16] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. of HotNets, 2012.

[17] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proc. of SIGCOMM, 2014.

[18] X. S. Huang, X. S. Sun, and T. Ng, “Sunflow: Efficient optical circuit
scheduling for coflows,” in Proc. of CoNext, 2016.

[19] “Apache Hadoop,” http://hadoop.apache.org/.
[20] Q. Liang and E. Modiano, “Coflow scheduling in input-queued switches:

Optimal delay scaling and algorithms,” in Proc. of INFOCOM, 2017.
[21] T. Inukai, “An efficient ss/tdma time slot assignment algorithm,” IEEE

Transactions on Communications, vol. 27, no. 10, pp. 1449–1455, 1979.
[22] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,

“Re-optimizing data-parallel computing,” in Proc. of USENIX ATC,
2012.

[23] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: guaranteed job latency in data parallel clusters,” in Proc. of
EuroSys, 2012.

[24] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Al-
truistic scheduling in multi-resource clusters,” in Proc. of OSDI, 2016.

[25] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao, “Morpheus: Towards Automated SLOs for Enterprise Clusters,”
in Proc. of OSDI, 2016.

[26] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“GRAPHENE: Packing and dependency-aware scheduling for data-
parallel clusters,” in Proc. of OSDI, 2016.

[27] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
scheduling in eagle: Divide and stick to your probes,” in Proc. of SOCC,
2016.

[28] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environments,”
in Proc. of OSDI, 2008.

[29] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proc. of OSDI, 2010, pp. 1–16.

[30] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. of NSDI, 2011.

[31] “Capacity Scheduler,” https://hadoop.apache.org/docs/r2.7.2/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

[32] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage,
S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky, G. Porter,
and A. C. Snoeren, “Scheduling techniques for hybrid circuit/packet
networks,” in Proc. of CoNext, 2015.

[33] J. Jiang, S. Ma, B. Li, and B. Li, “Symbiosis: Network-aware task
scheduling in data-parallel frameworks,” in Proc. of INFOCOM, 2016.

[34] C. Chen and et al., “Cluster fair queueing: Speeding up data-parallel
jobs with delay guarantees,” in Proc. of INFOCOM, 2017.

[35] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. of SIGCOMM,
2014.

[36] Z. Li and H. Shen, “Designing a hybrid scale-up/out hadoop architecture
based on performance measurements for high application performance,”
in Proceedings of International Conference on Parallel Processing,
2015, pp. 21–30.

[37] Z. Li, H. Shen, W. Ligon, and J. Denton, “An exploration of designing a
hybrid scale-up/out hadoop architecture based on performance measure-
ments,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 2, pp. 386–400, 2017.

[38] Z. Li and H. Shen, “Measuring scale-up and scale-out hadoop with
remote and local file systems and selecting the best platform,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 11, pp.
3201–3214, 2017.

[39] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 98–109, 2011.

[40] T. A. Roemer, “A note on the complexity of the concurrent open shop
problem,” Journal of scheduling, vol. 9, no. 4, pp. 389–396, 2006.

[41] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. of SIGCOMM, 2015.

[42] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: near-optimal network design for coflows,” in
Proc. of SIGCOMM, 2018.

