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Abstract—Accurate estimations on vehicle fuel consumption
and pollution emission on roads are important for vehicle velocity
optimization and driving route planning. Existing methods for
such estimations only consider vehicle driving speed and acceler-
ation but neglect the influence of road gradient. This is mainly be-
cause the road gradients for most road networks are not available
and none of existing methods for road gradient estimation can be
conducted inexpensively in practice and keep high road gradient
estimation accuracy simultaneously. Thus, how to estimate the
road gradient conveniently and accurately is an important but
challenging problem. To handle this challenge, we propose a
new road gradient estimation system which estimates the road
gradient only using a smartphone. When a vehicle is driving, a
smartphone in the vehicle continuously measures vehicle states
(velocity, acceleration, steering rate, position), which are used
to estimate the road gradient. To eliminate measuring noise
and drift noise, the deviation between the measured value and
estimated value is used to adjust the estimated value. Since
measured vehicle states when a vehicle changes lane adversely
influence the accuracy of road gradient estimation, we design
lane change detection to eliminate such influences. Finally, given
a group of road gradient estimates for a given route, we use
the track fusion algorithm to further eliminate measuring noise
and drift noise and improve road gradient estimation accuracy.
We conducted driving experiments in a city area to evaluate
our system. The experimental results show that our system’s
estimation error is reduced by 22% compared with existing
methods. The results also demonstrate the accuracy of our lane
change detection. Finally, we integrated the road gradient values
into vehicle fuel consumption and air pollution emission model to
estimate fuel consumption and air pollution emission and found
that the estimation values increase by 33.4% compared with the
values without considering road gradient.

I. INTRODUCTION

Vehicle popularization in the world has resulted in some

problems such as fuel shortage and air pollution. In order

to save fuel consumption and protect the environment, it

is important to model fuel consumption and carbon dioxide

emissions [1] for the estimation. A number of studies have

highlighted the significant effects of the road gradient on the

vehicle fuel consumption and air pollution emission. Frey et
al. [2] showed that vehicle fuel consumption can increase

by 40% when the road gradient changes from 0◦ to 5◦.
Boriboonsomsin et al. [3] demonstrated that compared with
a flat route, the vehicle driving on a downhill route reduces

the fuel consumption by 2 times while the fuel consumption

increases by 1.5 to 2 times for an uphill route. Therefore,

estimating road gradient and applying it into fuel consumption

and air pollution emission models becomes necessary.

As one of the most powerful web maps, Google Maps

provides street maps, real-time traffic conditions and road

gradient for users. However, its road gradient is only for

roads used by walkers and bicyclers [4] and its road gradient

information shows no accurate road gradient values but only

basic trendlines. Google Maps does not provide road gradient

information for vehicle driving roads, perhaps because it does

not directly affect the driving experience. However, it affects

the vehicle fuel consumption and hence final driving route

planning, especially for the roads with large road gradient.

Though many efforts have been devoted to estimating the

road gradient, none of them can be conducted inexpensively

in practice and keep high road gradient estimation accuracy

simultaneously. Some methods [5], [6], [7], [8] estimate road

gradient based on vehicle states including vehicle mass, engine

torque, active gear, vehicle speed and position. The studies in

[5], [6] assume that the active gear keeps the same during the

driving process though it is changed frequently in practice and

difficult to measure in real time. To deal with such a problem,

[7], [8] tried to measure real-time active gear values using

the gearbox management system, which is only available in

premium cars. Besides, these methods do not consider lane

change actions, which may result in road gradient estimation

errors (we will explain the details later). Other methods [9],

[10], [11] estimate the road gradient by placing the articulated

wheeled profilograph machine behind the frontal vehicle and

moving the profilograph machine over the road. The profilo-

graph machine is driven by frontal vehicle and needs special

setup in advance for different road types, which makes them

expensive to implement. Besides, they have high requirements

on sensor accuracy and signal processing speed during the

operation. Then, a challenge is how to estimate road gradient

of a road network accurately and inexpensively.

A smartphone has powerful embedded sensors and can

provide users different auxiliary functions. Considering the

popularity of smartphones, we propose a smartphone-based

system to estimate the road gradient of driving roads and

apply the road gradient values into the fuel consumption

and pollution emission model. Our proposed system uses a

smartphone in a driving vehicle to measure vehicle’s driving

states (including vehicle velocity, acceleration, steering rate
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and position) for the road gradient estimation. We build a

vehicle state space equation that can calculate road gradient

at a location based on vehicle longitudinal velocity and accel-

eration. Since the measuring noise and drift noise exist in the

measurement data from the smartphone, we apply Extended

Kalman Filter (EKF) to eliminate the effect of measuring noise

and drift noise on road gradient estimation accuracy based on

the deviation between estimated vehicle velocity and measured

vehicle velocity. Finally, given a group of road gradient esti-

mates (calculated from different velocity measures by different

sensors in a smartphone and CAN-bus (by connecting the

smartphone to CAN-bus through bluetooth)), for a given route,

we use track fusion algorithm [12] to eliminate measuring

noise and drift noise and improve road gradient estimation

accuracy.

To the best of our knowledge, it is the first work to estimate

the road gradient using a smartphone, and consider the road

gradient effects on estimating fuel consumption and pollution

emission in practice. However, there exist one challenge in es-

timating the road gradient with the smartphone in practice (that

are neglected in previous approaches). Drivers usually conduct

lane change actions frequently. During the lane change pro-

cess, the longitudinal velocity does not equal to the measured

vehicle velocity. Road gradient estimation error occurs if the

measured vehicle velocity is directly used as the longitudinal

velocity to estimate the road gradient. Current steering assis-

tance system helps to detect driver’s lane change action based

on advanced built-in sensors (e.g., cameras, infrared sensor and

radars) that only exist in premium cars, which limits its wide

application nowadays in practice. Therefore, the challenge is

to detect lane change actions only using a smartphone and

eliminate the influence of lane change actions on the road

gradient estimation accuracy. For this challenge, we propose

lane change detection algorithm to detect lane change actions

during the driving process and eliminate its effect on road

gradient estimation by adjusting the vehicle states.

To verify the road gradient estimation system, we conducted

driving experiments in the city area of Charlottesville, VA. In

the driving experiments, we conducted road gradient estima-

tion comparison between our proposed system and existing

methods. Our contributions are summarized below:

•We propose a road gradient estimation system which uses

a smartphone in a driving vehicle to measure the vehicle’s

driving states to estimate the road gradient. More specifically,

we build vehicle state space equation to estimate the road

gradient based on vehicle states, and apply the EKF algorithm

and track fusion algorithm to eliminate the measuring noise

and drift noise and improve road gradient estimation accuracy.

• To improve vehicle state online measurement accuracy (and
hence the accuracy of road gradient estimation), we propose

lane change detection algorithm. Lane change detection algo-

rithm detects lane change actions during driving process and

calculates longitudinal velocity from the measured velocity.

•We conduct driving experiments in the city area of Char-
lottesville to verify our system. The results demonstrate the

effectiveness of lane change detection algorithm. They also
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Fig. 1. The framework of road gradient estimation system.

show that our proposed system’s estimation error is reduced

by 22% compared with existing road gradient estimation

methods. In addition, we integrate road gradient values into

fuel consumption and pollution emission model to estimate

fuel consumption and pollution emission. When road gradient

is considered, fuel consumption and pollution emission esti-

mation values increase by 33.4% compared with the values

without considering road gradient.

The rest of this paper is organized as follows. Section II

presents an overview of our proposed road gradient estimation

system. We present the details of the system in Section III and

evaluate our system in Section IV. Section V presents related

research work. Finally, we conclude this paper in Section VI.

II. SYSTEM FRAMEWORK

Figure 1 presents the framework of our proposed road gra-

dient estimation system. The system contains four major parts:

data collection, data adjustment, road gradient estimation and

applications. In the data collection part, the smartphone coordi-

nate alignment system is built to describe the relative location

between the smartphone and the vehicle and calculate the

vehicle steering rate. The data adjustment part includes lane

change detection algorithm. Lane change detection algorithm

detects possible lane change actions based on vehicle steering

rate, which is the change of the angle (between vehicle driving

direction and road direction) per second. If the lane change

action is detected, vehicle longitudinal velocity during the

lane change process is derived from the measured vehicle

velocity to eliminate lane change’s adverse effect on road

gradient estimation accuracy. In the road gradient estimation

part, measuring vehicle states are used to estimate the road

gradient using the vehicle state space equation and EKF. Since

vehicle velocity can be obtained through different ways such

as speedometer, GPS data and accelerometer in the measuring

process, it will result in different possible road gradient esti-

mation tracks (series of estimation values). Different vehicles

also get different road gradient estimation tracks for the same

road. Here, track fusion algorithm is adopted to fuse the

road gradient estimation tracks in order to improve the road

gradient estimation accuracy.

III. SYSTEM DESIGN

In this section, we present how to build smartphone coordi-

nate alignment system for data collection. Then, we propose

lane change detection algorithm and road gradient estimation

method to estimate road gradient based on measured data.
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A. Data Collection

In the road gradient estimation system, the smartphone is

put in the vehicle and sensors in the smartphone are used to

collect vehicle driving states for the road gradient estimation.

The measured vehicle states contain vehicle velocity, vehicle

acceleration, vehicle steering rate and vehicle position (latitude

and longitude). A smartphone has different built-in sensors

[13] to measure these parameters. The accelerometer and

speedometer can be used to measure vehicle acceleration

and velocity, respectively. GPS data in the smartphone shows

vehicle position and its value is updated per second. The

vehicle steering rate can not be directly measured and we

calculate it based on road direction change rate (wroad) and

vehicle driving direction change rate (ŵvehicle) that can be

measured with angular velocity sensor.

In the smartphone coordinate system XBYBZB , as shown

in Figure 2(a), ZB represents the direction that is vertical to the

surface of the smartphone, XB and YB represent other two di-

rections that are parallel to the surface of the smartphone. The

speedometer and accelerometer in the smartphone measure

the smartphone velocity and acceleration in the smartphone

coordinate system XBYBZB . Note that we need vehicle

longitudinal velocity to estimate road gradient. To ensure that

the smartphone’s measured velocity in the YB direction equals

to the vehicle velocity, we align the smartphone coordinate

system XBYBZB with the road coordinate system XEYEZE

to form the smartphone coordinate alignment system; that

is, the smartphone is faced up and its YB direction is the

same as the vehicle driving direction as shown in Figure 2(a).

The smartphone is kept at the same location in the vehicle

without any relative movement, so it is assumed that the

smartphone and the vehicle would always have same moving

states (velocity, acceleration and steering angle).

The vehicle driving direction change rate ŵvehicle is the rate

of angle change between vehicle driving direction and earth

East direction. The road direction change rate wroad is the

rate of angle change between road direction and earth East

direction. In the smartphone coordinate alignment system, the

vehicle driving direction change rate ŵvehicle can be described

as the rotation rate of plane XBYB around ZB axis and the

road direction change rate wroad can be described as the

rotation rate of plane XEYE around ZE axis, which can be

calculated based on road geography information (longitude

and latitude). The angular velocity sensor in the smartphone

measures the vehicle driving direction change rate ŵvehicle. It

equals to the sum of vehicle steering rate wsteer and the road
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Fig. 3. Steering rate when the vehicle makes left/right lane change.

direction change rate wroad: ŵvehicle = wsteer+wroad. Thus,

vehicle steering rate (needed for estimating road gradient)

is calculated by wsteer = ŵvehicle − wroad. To show the

vehicle steering rate wsteer clearly, as shown in Figure 2(b),

we project YB axis on the XE − YE plane to get the new

axis Y
′
B . The angle change rate between YE axis and Y

′
B

axis is vehicle steering rate wsteer and can be calculated as

ŵvehicle−wroad. Note that the smartphone coordinate system

and the road coordinate system may not be aligned in some

situations such as smartphone’s relevant movements when

the vehicle starts or stops. These relevant movements will

affect steering rate measurement accuracy of the smartphone

coordinate alignment system. Here, we use the method in [14]

to eliminate the effects of smartphone’s relevant movements

on the smartphone coordinate alignment system.

B. Lane Change Detection

When a vehicle drives on the road, the vehicle always

conducts frequent steering actions. Based on the lane change

study [15], the average lane change numbers per mile is around

0.36. In addition, the lane change frequency in the urban

area is much larger than the value in the highway. When the

vehicle drives along the road, the longitudinal velocity equals

to measured vehicle velocity from the smartphone or CAN-

bus. During the lane change process, the longitudinal velocity

can not be represented by the measured vehicle velocity. If

the measured vehicle velocity is directly used for the road

gradient estimation during lane change process, it will cause

a large road gradient estimation error. To eliminate effects of

lane change, we firstly detect when the lane change action

starts based on vehicle states. Then, the vehicle steering angle

during the lane change process needs to be figured out. Finally,

the vehicle longitudinal velocity is adjusted based on steering

angle to estimate road gradient.

1) Lane change feature extraction: We know that during

the left lane change, the steering wheel firstly experiences

a counter-clockwise rotation and then a clockwise rotation,

which corresponds to the positive and then negative values

in the smartphone coordinate system. Oppositely, the right

lane change produces negative and then positive values in the

smartphone coordinate system. We did vehicle steering exper-

iments with ten drivers and measured their average steering

rates during the lane change process. In the experiments the

driving speed range is between 15km/h and 65km/h and the
average steering rates during left and right lane changes are

shown in Figure 3.
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Fig. 4. Feature extraction of steering rate with different driving maneuvers.

In Figure 3, we see that the steering rate experiences both

positive and negative bumps in both a left lane change and a

right lane change. For the left lane change, the positive bump

is followed by the negative bump. For the right lane change,

opposite situation occurs. To show the steering rate dynamics

more clearly, we applied the local regression method [16] to

filter measuring noise and drift noise in the steering rate data

and smooth the steering rate profile. The smoothed steering

rate profiles during the left and right lane change processes

are shown in Figure 4. Here we define two parameters (δ
and T ) to describe bump features. δ is the maximum absolute

magnitude in the steering rate profile and used to describe the

strength level of steering rate. T represents the time duration

of the steering rate above certain high strength level (i.e.,

0.7δ). Here, the threshold value is assigned to be 0.7δ because
this threshold value can effectively eliminate the effects of

angular velocity sensor measuring noise and drift noise and

road driving condition on bump detection accuracy in the

vehicle steering experiments. In practice its coefficient can be

adjusted based on the value of steering angle noises led by

vehicle tire condition and road roughness [17]. We identify two

corresponding necessary conditions to detect possible bumps

in a steering rate profile. One condition is that the maximum

absolute magnitude of the steering rate profile should be not

less than δ and the other condition is that the time duration
of the steering angle varying between 0.7δ and δ should be
more than T .

TABLE I
EXTRACTED FEATURES OF THE BUMP.

δ+L δ−L δ+R δ−R Minimum value (rad/s)

0.1215 0.1445 0.1723 0.1167 0.1167

T+L T−
L T+R T−

R Minimum value (second)

1.625 1.766 1.383 2.072 1.383

For left lane change shown in Figure 4(a), δ+L and δ−L are

maximum magnitudes of positive bump and negative bump,

respectively. T+L and T−
L are corresponding time durations.

Similarly, the parameter definitions of δ+R , δ
−
R , T

+
R and T−

R

are applicable to right lane change situation. Since there is

collected data for many left/right turns from one or many

vehicles, we assign δ and T the minimum values among

maximum absolute magnitudes and time durations during left

and right lane changes in order not to miss any bumps whose

features are close to our results. For example, to figure out

δ and T which are used to detect both left and right lane

changes, we compared steering rate data of 10 drivers under

different lane change processes. The comparison results are

laneW
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Fig. 5. Horizonal displacement for lane change detection.

shown in Table I and δ and T are 0.1167rad/s and 1.383s.

2) Lane change detection: In the above section, we extract-
ed the lane change features based on the steering experiments.

When the vehicle drives on the road, we calculate the vehicle

steering rate through the method introduced in Section III-A

and record it as steering rate profile. We check possible

bumps in the steering rate profile with bump features and

detect possible bumps by comparing two neighboring bumps

(positive or negative) in the profile. However, when the vehicle

passes through the S-sharp road, it will also produce similar

negative and positive bumps. Figure 5(a) shows the vehicle

steering track comparisons between right lane change and S-

sharp road. Therefore, we should consider how to distinguish

whether a vehicle is conducting lane change from driving

along a S-sharp road and avoid wrong lane change detection.

In general, the average horizonal displacement Wlane is

around 3.65m after making the lane change while the average

horizonal displacement Wsharp for a S-sharp road is usually

much larger than Wlane [18]. Here, we use the horizonal

displacement of bumps to distinguish lane change action and

S-sharp road. For the horizonal displacement of the bump

which is less than 3Wlane [15], we consider it as the lane

change action rather than S-sharp road. Figure 5(b) shows

how the horizonal displacement is calculated during the whole

right lane change process. As shown in right part of Figure

5(b), fsample is the smartphone sampling frequency and Ω
is the time period per each data measurement. T

′
is total

time of the lane change process and the steering angle αi at

ith time period equals to
∑i

j=0(w
j
steerΩ). w

j
steer represents

the steering rate wsteer at the jth time period which can

be measured through the smartphone coordinate alignment

system in Section III-A. Therefore, horizonal displacement W
during lane change process can be calculated as Equation (1).

Based on the above lane change feature extraction and hori-

zonal displacement calculation, we propose the lane change

detection algorithm to detect possible lane change actions

shown as Algorithm 1. The algorithm firstly detects possible

bumps based on the measured steering rate and recorded bump

status during the trip. Line 1 find outs possible bumps which
satisfy the bump feature requirements. Line 4 checks the state
of possible bumps in the steering rate profile. If one possible

bump is detected and the bump status is no-bump, the bump
status will be assigned as one-bump and its type (positive

or negative) will be recorded. Otherwise, the algorithm will

skip to Line 8 and compare types between the bump and its
neighbor bump. If the bump type is the same to neighbor bump

type, the algorithm will skip to Line 13 directly and continue
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next detection loop. If the bump and its neighbour bump have

opposite types and horizonal displacement is less than 3Wlane

[15], we can conclude that the vehicle has the lane change and

the algorithm will go to Line 10 to determine the lane change
type.

W =

n∑
i=0

v̂iΩsin(
i∑

j=0

wj
steerΩ) (1)

Where n is the number of time periods during the lane change
process; v̂i and αi represent the vehicle velocity and steering

angle at ith time period, respectively.

Algorithm 1: Lane change detection algorithm
Data: Steering rate wsteer and bump status are known

1 Calculate the maximum magnitude |wsteer| and time duration T1 of
wsteer varying between 0.7|wsteer| and |wsteer|;

2 while |wsteer| ≥ δ and T1 ≥ T do
3 Possible bump is detected and its sign is recorded;
4 if STATE is no-bump then
5 STATE becomes one-bump;
6 Its bump sign is recorded;
7 else
8 Check the sign between two bumps to decide whether their

signs are opposite;
9 if the signs are opposite and W ≤ 3Wlane then
10 Determine lane change type based on signs;
11 STATE becomes no-bump;
12 else
13 Do nothing and continue;
14 end
15 end
16 end

3) Lane change effect elimination: After lane change ac-
tions are determined with lane change detection algorithm, the

vehicle longitudinal velocity during the lane change process

needs to be adjusted for high road gradient estimation accu-

racy. The vehicle velocity in the longitudinal direction can be

adjusted through Equation (2).

v̂Li = v̂icos(
i∑

j=0

wj
steerΩ) (2)

Where v̂Li represents the vehicle longitudinal velocity at the

ith time period. Since the vehicle longitudinal velocity will be
adjusted through Equation (2) for every lane change process,

the effects of possible lane change actions on road gradient

can be eliminated effectively.

C. Road Gradient Estimation

1) Vehicle driving equation: Although the barometer in the
smartphone can be used to measure the altitude, its accuracy

is notoriously poor (e.g., several meters) [19] in practice.

Because of the limit of barometer low accuracy, it is difficult

to obtain accurate road gradient estimation even by applying

existing noise elimination algorithms such as EKF to eliminate

barometer measuring noise and drift noise. Compared with

the barometer, the speedometer and accelerometer in the

smartphone have high measurement accuracy. Therefore, we

build a road gradient estimation equation to estimate the road

gradient based on vehicle driving states including velocity and

acceleration, etc. In order to estimate the road gradient with

measured vehicle states, the relationship between measured

vehicle states and the road gradient needs to be established.

We derive the relationship between vehicle states and road

gradient θ from [20] as follows:

θ = arcsin(
M

rmg
− ρAfCdv

2

2mg
− a

g
)− β (3)

where M is vehicle driving torque and r is wheel radius; m
is gross weight; ρ is average air density; Af is frontal area

of the vehicle; Cd is drag coefficient; v is vehicle velocity; a
is vehicle acceleration value and g means gravity constant; μ
is rolling resistance coefficient and β = arcsin( μ√

1+μ2
) is a

constant value (which indicates the rate of rolling resistance

to gross weight). Vehicle driving torque M can be calculated

based on the engine torque measured through smartphone

apps [21]. Since other parameters are constant and known in

advance, the road gradient can be calculated with Equation (3).

However, the above velocity value contains measuring noise

and drift noise during the measurement process, which results

in low road gradient estimation accuracy. In the next section,

we build the vehicle state space equation to describe road

gradient dynamics and integrate it with EKF [22] to eliminate

effects of measuring noise and drift noise.

2) Vehicle state space equation: When the vehicle drives
on the road, the dynamics of road gradient θ can be shown as
Equation (4):

θ̇ =
ρAfCdva

mg cos θ
(4)

here, Equation (4) is derived by taking the derivative of

Equation (3). When the vehicle drives on the road with

road gradients, rolling resistance (which corresponds to β in
Equation (3)) is much smaller than other resistances such as

road gradient resistance (which is related to θ) and acceleration
resistance (which is related to a). Therefore, we ignore the
rolling resistance during the derivation process. Since the

data measured through the smartphone is digital value, we

change Equation (4) into discrete form through first order

Euler approximation to generate discrete-time vehicle state

space equation shown as follows:[
v(t+ 1)
θ(t+ 1)

]
=

[
v(t) + â(t)

θ(t) +
ρAfCdv(t)â(t)
mg cos θ(t)

]
(5)

where t denotes the discrete time sample number; v(t) and
θ(t) are defined as estimated longitudinal velocity and road
gradient at time t; â(t) is measured vehicle longitudinal

acceleration value. As explained in Section III-C1, parameters

ρ, Af , Cd, m and g are constant values and there is no need
to measure them. The measured longitudinal acceleration â(t)
contains noises, which can result in road gradient estimation

error by Equation (5). To eliminate the effects of such noises

on road gradient estimation accuracy, we use EKF to eliminate

noises and finally determine longitudinal velocity and road

gradient. EKF is an algorithm for non-linear systems, which

utilizes a series of measurements containing noises to estimate
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unknown variables that tend to be more accurate than those

estimated based on a single measurement alone.

We use v̂(t + 1) to denote measured longitudinal velocity
from the smartphone or CAN-bus at time t+1. EKF updates

vehicle velocity and road gradient with their previous state

values and eliminates the negative effect of noises by adjusting

its Kalman gain matrix K during each update process. The

matrix [v(t+1), θ(t+1)] is firstly estimated based on matrix
[v(t), θ(t)] and Equation (5) and denoted as matrix [v(t +
1|t), θ(t + 1|t)]. Then, Kalman gain matrix K is adjusted in

the calculation process based on the velocity deviation Δ =
v̂(t + 1) − v(t + 1|t) and Equation (5). Finally, the matrix
[v(t+1), θ(t+1)] is adjusted based on K and deviation Δ and

it equals to [v(t+1|t), θ(t+1|t))] +KΔ. More details about
how to use EKF to measure a variable with the consideration

of the noises can be found in [22].

3) Track fusion for road gradient estimation: When the

vehicle drives on the road, vehicle velocity can be obtained

through different ways such as GPS data, speedometer and

accelerometer. The above methods usually generate differ-

ent velocity values for the same vehicle, which results in

different road gradient estimation tracks. Different vehicles

also generate different road gradient estimation tracks for a

given road. To get the final road gradient estimation, we use

the track fusion algorithm [23] to fuse these estimated road

gradient tracks. By the track fusion algorithm, we can take

full advantages of these velocity measurements and obtain

more accurate road gradient estimation value. Here we develop

multi-sensor road gradient estimation system which integrates

track fusion and road gradient estimation together to obtain

more accurate estimation value.

The multi-sensor road gradient estimation system can be

shown as Figure 6. Vehicle states including velocities from

different sensors are firstly formed for the road gradient esti-

mation. Then, based on vehicle states, vehicle state space equa-

tion and EKF are integrated together to estimate road gradient

tracks. Finally, these road gradient tracks are fused together by

the track fusion algorithm to improve the estimation accuracy

of road gradient. In this paper, each road gradient track belongs

to sensor track type and there is no cross covariance between

any two road gradient tracks. Therefore, we select basic convex

combination algorithm as our track fusion algorithm for its

simple implementation and good fusion performance [23].

In the basic convex combination algorithm, different road

gradient tracks are linearly combined together. The final road

gradient can be calculated by:

θ̄ = U

N∑

k=1

(P−1
k θk) (6a)

U = (

N∑

k=1

P−1
k )−1 (6b)

where θ̄ is the final road gradient estimation value through
track fusion; θk is the road gradient value for the k

th track;

N is the number of total tracks; U is the system covariance

matrix of N road gradient tracks and used to fuse different

road gradient values through Equation (6a). Pk represents

estimation error covariance matrix of the kth track in EKF.

After a vehicle obtains the road gradient of a road, it can

upload it to the cloud and the cloud can use the track fusion

algorithm to fuse road gradient results from different vehicles,

which produces more accurate road gradient and can be used

in transportation services such as routing planning.

D. Reference Road Gradient for Performance Evaluation

To evaluate the performance of our proposed system, we

need to know the road gradient ground truth in advance.

Here, we design a method to obtain reference road gradient

profile based on road geography information including the

latitude, the longitude and the altitude. To obtain road gradient

ground truth of a certain road, we firstly obtain road altitude

information by driving a vehicle installing an altimeter whose

measuring accuracy reaches around 0.01 meter and manually
divide the road into small equal segments from South to North

and from West to East. And then, for each small road segment,

its starting point and ending point are marked with S and E
respectively. The latitude and longitude of its starting point and

ending point are used to infer road segment direction. Here the

road segment direction represents the angle of road segment

relative to the earth East direction and can be calculated as

arctan λE−λS
ϕE−ϕS

, where ϕS are λS the latitude and longitude of
starting point, ϕE and λE are for ending point. The altitude

difference between starting point and ending point is used to

calculate its road gradient of a road segment: arcsin zE−zS
d ,

where zS and zE are the altitudes of starting point and ending

point, and d is the road segment length. Finally, these small
road segments are connected together to form the whole

route and their road gradient values constitute the reference

road gradient profile. Since precisions of road geography

information such as latitude/longitidue and altitude can reach

at 0.00001 degree level and 0.01 meter level, respectively, this

method can calculate the road gradient accurately. However,

this method requires high manual measurement load, which

limits its application in practice. In contrast, our proposed road

gradient estimation system estimates road gradients only using

a smartphone and does not have manual measurement load.

E. Fuel Consumption and Pollution Emission Model

The road gradient information can be exploited for estimat-

ing fuel consumption and air pollution emission on the road

surface level. There exist several models for fuel consumption
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estimation, which quantify the relationship between fuel con-

sumption and driving states such as driving velocity, accelera-

tion and road gradient. In this paper, the most frequently used

model – Vehicle Specific Power (VSP) [24], [1] is employed to

estimate vehicle power per unit mass. By utilizing the vehicle

mass and the gasoline gallon equivalent (GGE), we can convert

VSP into Equation (7) to calculate fuel consumption per hour

Γ under different vehicle velocities and road gradients.

Γ =
1

GGE
(Av3 +Bmv sin θ + Cmv +mav +Dma) (7)

Where Γ represents vehicle gasoline consumptions per hour

(gallon/hour) and v is vehicle velocity (m/s); m is gross

vehicle weight and A, B, C and D are parameter coefficients.

The parameters used for fuel consumption estimation in this

paper are shown in Table II. Although diversity of vehicles

will slightly affect the final computation of fuel consumption,

fuel consumption estimation above is still useful because the

above consumption calculation of selected passenger car (with

average gross vehicle weight 1, 479kg) can represent most

vehicles’ fuel consumptions.

TABLE II
VEHICLE PARAMETERS FOR PERFORMANCE EVALUATION.

GGE A B C D m

0.0545 4.7887 21.2903 0.3925 3.6000 1.479

As for air pollution emissions such as carbon dioxide and

PM2.5, the vehicle’s emissions are proportional to its fuel

consumption. For example, around 8, 908g of carbon dioxide
are produced from burning a gallon of gasoline. Every gallon

of gasoline burned creates about 0.084g of PM2.5. Therefore,
we can estimate vehicle emissions based on its fuel consump-

tion through the relationship memission = FVfuel, where
memission and Vfuel represent the vehicle emission mass (g)
and the consumed fuel volume (gallon), respectively. F is the

coefficient between vehicle emission and fuel consumption.

For example, it equals to 8,908 for carbon dioxide and 0.084

for PM2.5.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed road gradient

estimation system, we conducted the driving experiments in

the city of Charlottesville, VA. We put Samsung Galaxy S5

smartphone into Nissan Altima 2006 and drove the vehicle

on different roads to collect experimental data. We used the

method introduced in Section III-D to obtain the reference

road gradient profiles.

Compared Methods: We compared our proposed road gra-
dient estimation system with the EKF-based method (EKF in

short) [7] and Artificial Neural Network-based method (ANN

in short) [8] to evaluate the system estimation performance. In

EKF, the road gradient is estimated based on vehicle altitude

and vehicle driving states (vehicle longitudinal velocity, active

gear and engine torque). The above values are obtained as

follows: vehicle altitude and longitudinal velocity are mea-

sured with the smartphone; the active gear and engine torque

are used to calculate the driving torque. However, drivers

(a) Roads for driving experiments

0
1

2

3

4

56
7

(b) Zoomed map of road in red color

Fig. 7. Experimental roads in the urban area of Charlottesville.

adjust active gears frequently in practice and it is difficult to

measure active gear in real time. Here we directly calculate

the driving torque with vehicle velocity, acceleration and

vehicle mass through the driving torque estimation method

in [7] to avoid the measurement of active gear and engine

torque. EKF also considers the data measurement noise and

drift noise during the road gradient estimation process. ANN

estimates road gradient using the neural network method based

on vehicle related states including velocity, acceleration and

altitude. We used total 4,320 samples to train ANN. For each

sample, it contains vehicle velocity, acceleration and altitude

measured with the smartphone and its corresponding road

gradient ground truth at each location.

A. Experimental Settings

1) Road information: The experimental roads in the area of
Charlottesville are total 164.80km long and shown in Figure

7(a). The experimental roads are divided into two parts marked

with the red color and the black color. The road marked with

red color is used to show the performance of the road gradient

estimation system in a small scale and its zoomed map is

shown in Figure 7(b). The roads marked with black color is

used to verify the proposed system estimation performance and

conduct performance comparisons between proposed system

and other road gradient estimation methods in a large scale.

For the road marked with red color, people can make lane

change actions and its road gradient changes frequently, so it

can also be used to test the lane change detection algorithm.

Here, we discuss our system’s estimation performance and

make the comparisons with other methods in both small-scale

and large-scale road network.

TABLE III
ROAD GRADIENT AND ROAD LANE NUMBERS OF THE ROAD.

Section 0-1 1-2 2-3 3-4 4-5 5-6 6-7

Uphill(+)/downhill(-) + - + - + - +

The num. of lanes 1 1 1 1 2 2 1

The road marked with red color in Figure 7(a) starts from

point 0 to point 7 shown as Figure 7(b). It is total 2.16km long

and some parts of the road have one lane while some others

have two lanes in the same direction. Therefore, one type is

the road with one road line and the other type is the road with

two road lanes. As shown in Figure 7(b), the triangle marks

separate the road into small sections based on its reference

road gradient profile and road types. We use negative road

gradients to represent downhill roads and use positive road

gradients to represent uphill roads. Table III shows the features

of each section of the road.
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Fig. 8. Road grade estimation performance comparisons.

2) Data collection: We drove the vehicle on the experiment
road to collect data for road gradient estimation accuracy

comparisons among EKF, ANN and our system. The data used

by EKF includes vehicle altitude, vehicle velocity, and vehicle

acceleration. The vehicle altitude was measured through the

smartphone built-in barometer. As in [25], [26], the vehicle

velocity and the vehicle acceleration were measured with the

speedometer and the accelerometer in the smartphone, respec-

tively. For ANN, it needs the data including vehicle velocity,

vehicle acceleration and vehicle altitude and these data were

measured through the smartphone. For our system, it needs

different vehicle velocity profiles and steering rate to estimate

road gradients. Vehicle velocity profiles of one vehicle were

obtained based on GPS, speedometer, and accelerometer in the

smartphone and CAN-bus. Based on different vehicle velocity

profiles, our system firstly estimated individual road gradient

profiles and then fused the estimated road gradient profiles into

one final road gradient profile. The steering rate was calculated

based on the method in Section III-A and used to detect lane

change actions and adjust vehicle velocity values. To obtain

accurate reference road gradient profile with low computation

time cost, we set road segment length to 1 meter to calculate

the reference profile.

B. Experimental Results

1) Road gradient estimation performance: For the driv-

ing experiment in Figure 7(b), the road gradient estimation

comparisons between our proposed system (OPS), EKF and

ANN are conducted. Here, the absolute estimation error is

used to describe the road gradient estimation accuracy per each

measurement and calculated as the difference between estimat-

ed road gradient value and road gradient ground truth value.

The absolute estimation error comparisons between OPS, EKF

and ANN are shown in Figure 8(a). The value in the x axis
represents the vehicle position relevant to the start-point in the

experiment. We see that OPS has the least absolute estimation

error compared with EKF and ANN, and Mean Relative Errors

(MREs) for OPS, EKF and ANN equal to 11.9%, 20.3% and

31.6% respectively, which demonstrates high road gradient

estimation accuracy of OPS. This is because OPS eliminates

the negative effects of lane change actions on the road gradient

estimation and improves the road gradient estimation accuracy

by fusing different estimated road gradient tracks. Besides,

ANN has larger absolute estimation error than both OPS and

EKF. This is because only 4,320 samples are used to train

the ANN and these training samples are not enough for ANN,

which reduces its estimation accuracy. Though ANN does not
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Fig. 9. Road gradient estimation of road network in Charlottesville.

require that the relationship between road gradient and inputs

is pre-known, it needs to be trained periodically to update its

inertial architectures and its estimation accuracy is affected

greatly by the number of training samples, which limits its

application in road gradient estimation.

In our proposed system, vehicle velocities from four dif-

ferent sources are used to estimate road gradient. Total four

corresponding road gradient tracks are formed and sent to track

fusion method for final road gradient estimation. To study

how the number of tracks affects road gradient estimation

accuracy, we fuse different number of road gradient tracks

using the track fusion method to obtain the estimated road

values. The Cumulative Distribution Functions (CDFs) of road

gradient estimation with different tracks are shown in Figure

8(b). When the value in the y axis equals to 0.5, absolute
estimation error for the road gradient estimation with no track

fuse is 0.23 and values with track fusion are around 0.09,

which demonstrates the effectiveness of track fusion method

on improving road gradient estimation accuracy. We also see

that the absolute estimation error can be reduced significantly

when the number of fused tracks is 3 or more. It helps us

to determine how many velocity sensors are needed to ensure

high estimation accuracy in practice.

To evaluate the robustness of proposed system on different

road conditions (i.e., lane change, out of GPS service), we

did the driving experiment on large-scale road network shown

in Figure 7(a) and applied our system to estimate their road

gradient profiles. The estimated road gradient of road network

in Charlottesville is shown in Figure 9(a). The color bar

on the right represents different road gradient values; the

road with dark red has small road gradient while the road

with orange has high road gradient. The reference profiles

of such road network are calculated through the method

introduced in Section III-D. MRE of road gradient estimation

is 12.4% and close to the estimation result in the small-scale

road experiment. Therefore, our proposed method has high

robustness on different road conditions and can be used to

estimate the road gradient for roads where drivers change lanes

or GPS service is not available in a city.

CDFs between OPS, EKF and ANN are compared in Figure

9(b). We see that OPS has the least estimation error compared

with EKF and ANN. More specifically, when the value in the y
axis equals to 0.5, the absolute estimation errors of OPS, EKF

and ANN are 0.09, 0.13 and 0.36, respectively. We see that for

the same value in the y axis, OPS always has least estimation
error compared with EKF and ANN. This is because OPS

uses lane change detection to eliminate lane change effects
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Fig. 10. Vehicle fuel consumption (gallon/hour/vehicle) and pollution emis-
sion (ton/km/hour) estimations in Charlottesville.

on estimation accuracy and uses the track fusion algorithm to

reduce the effects of sensor measuring noise and drift noise.

C. Application: Fuel Consumption and Pollution Emission
Estimations

Based on Section IV-B, we see that our proposed system

has high road gradient estimation accuracy. Its estimation

results can be applied to real-world services. For example,

road gradient affects vehicle fuel consumption and air pollu-

tion emission greatly, and accurate road gradient estimation

helps to improve vehicle fuel consumption and pollution

emission estimation accuracy. For vehicle fuel consumption

estimation, we integrated road gradient values into the fuel

consumption model and calculated the fuel consumptions

when the passenger vehicle drives in the city with average

driving speed 40km/h. Figure 10(a) visualizes the average
fuel consumptions per hour in the city. By comparing Figure

9(a) and Figure 10(a), we see that high fuel consumption

values per hour are always located at road segments with large

road gradients, which explains why the vehicle driving on the

uphill usually consumes much more fuel compared with that at

flat roads. Since Figure 10(a) provides more accurate vehicle

fuel consumption by considering the road gradient, it can be

applied into vehicle routing plan area to determine the best

route to minimize the fuel consumption.

For vehicle pollution emission estimation, we integrated fuel

consumption per vehicle with average traffic volume at each

road to calculate the average vehicle pollution emission. Here,

we got average traffic volumes of streets from Annual Average

Daily Traffic [27] and applied them into the vehicle emission

model in Section III-E to calculate carbon dioxide emissions

shown in Figure 10(b). We see that carbon dioxide emission

distribution is different from fuel consumption distribution in

Figure 10(a). This is because total carbon dioxide emission for

certain road segment is determined by both fuel consumption

per vehicle and real-time traffic volume. Real-time estimation

on carbon dioxide emission distribution in the urban area is

important for the government and can help to control vehicle

air pollution emission and monitor air quality.

V. RELATED WORK

Current road gradient estimation methods can be divided in-

to measurement-based methods and algorithm-based methods.

Measurement-based methods [9], [10], [11] measure the road

gradient through visual inspections or direct measurements of

road irregularities with a fully instrumented vehicle. However,

these methods are extremely expensive to implement and have

high requirements on sensor accuracy and signal processing

speed during the operation. Algorithm-based methods adopt

the algorithms such as Extended Kalman Filter, data fusion

and Artificial Neural Network [8], [5], [6], [7] to estimate the

road gradient based on measured vehicle states. Compared

with measurement-based methods, algorithm-based methods

are inexpensive to implement. However, these methods have

relatively low estimation accuracy and are conducted with spe-

cial assumptions on vehicle parameters, which may be difficult

to obtain. Besides, they ignore the effect of individual driving

actions such as lane change on road gradient estimation.

Our method estimates road gradient with only smartphones.

Besides, we build lane change detection algorithm to eliminate

the negative effects of lane change.

Many efforts have been made to exploit the smartphone

application in vehicle steering behavior detection. Current

smartphone based steering behavior detection methods can be

divided into smartphone camera-based methods and smart-

phone camera-free methods. For smartphone camera-based

methods [28], [29], [30], the image of vehicle position with

respect to the lane boundaries are captured and then analyzed

with imaging processing to detect vehicle steering actions.

However, these methods have high requirements on clear road

view and good light condition and high computation load can

easily run out the smartphone energy. Smartphone camera-free

methods [31], [32], [18] take full advantages of in-built sen-

sors to describe vehicle steering behavior and detect steering

behavior types. However, these methods only discussed how

to detect lane change actions based on smartphone sensors

but did not discuss possible effects of lane change actions on

road gradient estimation accuracy and how to eliminate their

effects. Our proposed lane change detection method considers

the effects of lane change actions and eliminates their effects

by adjusting vehicle states.

Several existing fuel consumption and emission estimation

methods have been proposed to estimate vehicle fuel con-

sumption and pollution emission. One group of works [33],

[34], [35] conduct estimation based on empirical relationships

between fuel consumption and vehicle states such as velocity

and acceleration. Another group of works [36], [37], [38]

estimate fuel consumption and pollution emission based on

vehicle driving equation which describes the power needed

under different speeds and accelerations. However, all the

above methods do not consider the effect of road gradient

on the energy consumption and pollution emission, which

can lead to large estimation error for the vehicles driving on

the road with large road gradients. In this paper, we utilize

the road gradient estimation system to estimate road gradient

and integrate road gradient values into fuel consumption

and pollution emission models to obtain more accurate fuel

consumption and pollution emission estimation.

VI. CONCLUSION

In this paper, we infer the road gradient of a city’s road

network based on measured vehicle driving states. However, it
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is a challenge to estimate road gradient with high accuracy and

implementation convenience. To overcome this challenge, we

proposed a road gradient estimation system which estimates

the road gradient with only smartphone. In the proposed

system, we firstly designed a lane change detection algorithm

to eliminate the negative influences of lane changes. Then,

we built the vehicle state space equation and applied EKF

and the track fusion algorithm to estimate road gradient

and also improve estimation accuracy. Finally, we conducted

driving experiments in the Charlottesville city to evaluate our

system. The results demonstrate that our method has high

estimation accuracy and the road gradient estimation error can

be reduced by 22% compared with other methods. We also

applied road gradient values into the fuel consumption and

pollution emission model to obtain more accurate estimation

of fuel consumption and pollution emission in Charlottesville.
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