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Abstract— Production data analytic workloads typically consist
of a majority of jobs with small input data sizes and a small
number of jobs with large input data sizes. Recent works ad-
vocate scale-up/scale-out heterogeneous clusters (in short Hybrid
clusters) to handle these heterogeneous workloads, since scale-
up machines (i.e., adding more resources to a single machine)
can process small jobs faster than simply scaling out the cluster
with cheap machines. However, there are several challenges for
job placement and data placement to implement such a Hybrid
cluster. In this paper, we propose a job placement strategy
and a data placement strategy to solve the challenges. The job
placement strategy places a job to either scale-up or scale-out
machines based on the job’s characteristics, and migrates jobs
from scale-up machines to under-utilized scale-out machines to
achieve load balance. The data placement strategy allocates data
replicas in the two types of machines accordingly to increase
the data locality in Hybrid cluster. We implemented a Hybrid
cluster on Apache YARN, and evaluated its performance using a
Facebook production workload. With our proposed strategies, a
Hybrid cluster can reduce the makespan of the workload up to
37% and the median job completion time up to 60%, compared
to traditional scale-out clusters with state-of-the-art schedulers.

I. INTRODUCTION

Many big data analytic clusters like MapReduce [1] process
thousands of jobs and a large amount of data every day [2].
Conventionally, these clusters consist of many homogeneous
scale-out machines. Recent studies [3–5] advocate to explore
hybrid scale-up and scale-out heterogeneous clusters (in short
Hybrid clusters) to handle these workloads, since previous
studies [6, 7] show that a large number of jobs (e.g., more than
80%) in these workloads only process small data size and have
diverse job characteristics (e.g., shuffle data size). Here, scale-
up is vertical scaling, which means adding more resources to
the nodes of a system, typically the processors and RAM, and
scale-out is horizontal scaling, which refers to adding more
nodes with few processors and RAM to a system. Appuswamy
et al. [4] evaluated the jobs with different characteristics on
scale-up and scale-out machines, and found that scale-up is
significantly better in some cases, than scale-out. Hence, we
are motivated to design Hybrid cluster to handle the diverse
workloads for high performance.

There have been studies [3, 8–10] focusing on improving the
performance in heterogeneous clusters. However, since these
proposals do not consider the diverse job characteristics and
do not take advantage of this feature, they are not suitable for
Hybrid cluster, which is designed to process such workloads.

For example, since we intentionally use scale-up machines to
deal with job diversity, we expect the jobs that favor scale-
up to run on scale-up machines, which is not considered in
previous work [3, 8–10]. Li et al. [5, 11] identified job and data
placement challenges to design Hybrid cluster and configured
it with a remote file system to solve the challenges. However,
the proposed solution with remote file system causes a large
amount of remote data transfer.

In this paper, we focus on designing Hybrid cluster with
distributed file system (e.g., HDFS), where some scale-out
machines are replaced by scale-up machines that have the same
cost as the scale-out machines. The goal of Hybrid cluster is to
improve the performance of big data analytics with the same
monetary cost, namely a more cost-effective cluster. First, we
identify the key challenges in designing Hybrid clusters to
improve the performance of big data analytic clusters. There
are two main challenges – job placement challenges (J.1, J.2,
and J.3) and data placement challenge (D.1).
• J.1 The jobs benefit differently from scale-up and scale-out
machines. Thus, we need to adaptively place the jobs to scale-
up or scale-out machines based on their job characteristics to
achieve the most benefits for the jobs.
• J.2 The job placement should consider the load balancing.
After we schedule the jobs to scale-up or scale-out machines
based on their job characteristics, load imbalance may occur
on different types of machines. For example, suppose a large
amount of small jobs are submitted to Hybrid cluster simulta-
neously, while there are not many large jobs. If we still run the
jobs on different machines based on their job characteristics,
it leads to overload on the scale-up machines, while under-
utilizing on the scale-out machines.
• J.3 The different computing speed results in significant
imbalance progress of tasks within a job, that is, fast ma-
chines complete the tasks faster and need to wait for the
slow machines to complete the tasks of the same job. This
leads to a non-negligible delay and significantly degrades the
performance of the job [8, 10].
• D.1 Since we adaptively place a job to scale-up or scale-out
machines based on its job characteristics, in order to maintain
data locality [12], we need to accordingly place the data of
every job to the machines that the job is supposed to run on.

Second, we propose job placement and data placement
strategies to handle the challenges.



Job placement strategy. In order to achieve the best perfor-
mance on Hybrid cluster, we use a Support Vector Machine
(SVM) model to classify the jobs into two groups, scale-up
jobs (i.e., small jobs) and scale-out jobs (i.e., large jobs),
based on the job characteristics. We use the term scale-up
jobs (scale-out jobs) to refer to the jobs that are better to run
on scale-up machines (scale-out machines).

Further, to balance the loads between scale-up and scale-out
machines, we propose a job stealing strategy, which adaptively
steals scale-up jobs to run on scale-out machines when the
scale-out machines are under-utilized.
Data placement strategy. To solve the data placement chal-
lenge, we leverage the replicas in the clusters and place the
data replicas to scale-up or scale-out machines, considering
both job characteristics and job stealing.

Finally, we implement a Hybrid cluster with the above
two strategies, and evaluate its performance through real
cluster run and large-scale trace-driven simulation. Using
the workload derived from Facebook [6], we show that with
our proposed strategies, the Hybrid cluster can reduce the
makespan of the workload up to 37% and the median job
completion time up to 60%, compared to traditional scale-out
clusters with state-of-the-art schedulers.

The rest of the paper is organized as follows. In Section
II, we present the background and motivations. We describe
the main design of Hybrid cluster with corresponding job
placement and data placement strategies in Section III and
present our experiment evaluation in Section IV. Section VI
concludes this paper with remarks on our future work.

II. BACKGROUND
We use MapReduce as the example framework in this paper.

However, the ideas of exploiting Hybrid cluster and differenti-
ating small and large jobs to accelerate big data analytics can
be applied to other frameworks, such as Spark [13].

A. Hadoop MapReduce

A MapReduce job consists of map and reduce stages, which
contain multiple map and reduce tasks respectively. Each map
task processes one input data block and generates intermediate
data (called shuffle data). Each reduce task has two steps –
shuffle and reduce. In the shuffle, all shuffle data with the
same key is transferred to the same reduce task.

Hadoop [14], a popular implementation of MapReduce, has
three main components - Resource Manager (RM), Applica-
tion Master (AM) and Node Manager (NM). The scheduler
(default is Fair [15] or Capacity [16]) is an essential compo-
nent of RM, which determines how much and where to allocate
the resources to each application. Each application (i.e., job)
has an associated AM, which is responsible for requesting
resources from RM. RM responds to a resource request by
granting a resource container managed by a specific NM.

Hadoop uses Hadoop Distributed File System (HDFS) as
its primary distributed data storage system. Data is broken
down into smaller blocks and stored in HDFS. To ensure
fault tolerance, HDFS uses replication strategy. By default,
the number of replicas is three for each block in HDFS.

B. Opportunities, Objectives and Benefits

The large memory of scale-up machines provides benefits
for the jobs with large shuffle data size [4]. First, we can set
a higher heap size with the large memory. The heap is used to
buffer the in-memory data (e.g., shuffle data). Data is spilled
to the storage when buffers are full, which leads to overhead.
A higher heap size can reduce the times to spill. Second, the
excess memory can be used as RAMdisk to store shuffle data
to accelerate its read/write. Hence, the scale-up machines can
provide more benefits to the jobs with large shuffle data size,
as the shuffle is efficient in scale-up.
Previous studies show that scale-up machines can process
small jobs faster than scale-out machines [4, 5]. A big data
analytic cluster traditionally consists of many cheap scale-out
machines. Scale-up machines differ from scale-out machines
in that scale-up machines have more powerful CPU and more
RAM in one machine. Therefore, scale-up machines may
process the small jobs faster but large jobs slower [4, 5] due to
the fact that large jobs are generally data-intensive and can be
processed faster with higher parallelism on scale-out machines.
In this paper, we use scale-up (scale-out) job and small (large)
job interchangeably.

We have conducted a measurement study to compare
the performance between scale-up machine and scale-out
machines. The scale-up machine is equipped with 24 cores
E5-2680V3 CPU, 128GB RAM size, while each scale-out
machine is equipped with 8 cores AMD Opteron 2356 CPU,
16GB RAM size. After some market investigations [17, 18],
we find that the price of each selected scale-up machine is
similar to 5 selected scale-out machines. We deployed several
configuration optimizations on the scale-up machine as in
[4, 5]. For example, we used half of the RAM (i.e., 64 GB)
as RAMdisk to store the shuffle data, and also changed the
heap size from default 200MB to 2.5GB.

We ran TeraSort and WordCount [14] with different input
data sizes on 1 scale-up machine and 5 scale-out machines,
respectively. Figure 1 shows the execution time of TeraSort and
WordCount (normalized by the results of scale-up machine)
versus different input data sizes. When the input data size is
smaller than certain threshold (called crosspoint threshold),
the scale-up machine outperforms the scale-out machines by
up to 60%; otherwise, the scale-out machines outperform the
scale-up machine by up to 35%. Similar conclusions are also
observed in [4]. This is because (1) when the input data size is
small, scale-up machine benefits the job with more powerful
CPU and RAMdisk; (2) as the input data size of the job
increases, the total number of CPU cores and memory on
scale-up machine limit the performance of the job, while scale-
out machines can benefit the job with more CPU cores and
higher aggregate memory bandwidth. Also, we observe that
since the job characteristics of TeraSort and WordCount are
different, they have different benefits from scale-up machines.
Thus, the crosspoint thresholds for the two jobs are different
(32GB for TeraSort and 64GB for WordCount).
The job characteristics can be predicted with small error
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(a) TeraSort
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(b) WordCount

Fig. 1: Measurement results of TeraSort and WordCount.

[2, 19, 20]. Previous studies [2, 19, 20] show that a large
number of jobs in the clusters are recurring and their job
characteristics (e.g., shuffle data size) can be predicted with a
small error (e.g., 6.5% [2]).
Objective. Due to the diversity of current big data workloads,
our objective in this paper is to accelerate big data analytics by
designing Hybrid cluster at the same cost as traditional scale-
out cluster. We replace some cheap scale-out machines with
scale-up machines that have the same monetary cost. The ben-
efits of Hybrid cluster can be summarized as follows.
• For the small jobs, they are executed on the scale-up ma-
chines, which process the small jobs faster. Therefore, the
performance of the small jobs is improved because they benefit
from the scale-up machines on Hybrid cluster.
• For the large jobs, although Hybrid cluster does not have
any direct improvement on them, they can also run faster. As
the small jobs are executed on scale-up machines, the large
jobs can run on scale-out machines with much less resource
contention (e.g., CPU and network) from the large number of
small jobs, and hence, the large jobs can also finish earlier.

III. DESIGN OF HYBRID CLUSTER

In this section, we present the design of Hybrid cluster,
including the architecture of the cluster, job placement strategy
and data placement strategy for this cluster.

A. Hybrid Cluster Architecture

The traditional Hadoop cluster generally consists of all
scale-out machines organized into multiple racks [2], as shown
in Figure 2(a). In Hybrid cluster, we replace some scale-out
machines with scale-up machines that have the same cost as
the scale-out machines. There are two questions in the design
of Hybrid cluster architecture.
Where to place the scale-up machines in Hybrid? We pro-
pose the architecture of Hybrid cluster as shown in Figure 2(b)
– placing the scale-up machines and the scale-out machines
on separate racks so that no scale-up and scale-out machines
are on the same rack, due to the reasons below.
• We can reduce cross-rack network traffic by using this
architecture. Jalaparti et al. [2] demonstrated that most small
jobs in current production workloads can be placed in only one
rack without sacrificing the parallelism and compromising the
performance. Using this property, we can place the input data
of the small jobs in a single rack. As a result, the map tasks of
a job can run on this rack for map input data locality and the
map output data is also generated in the rack. Subsequently,
we can schedule the reduce tasks of the job on the same rack,

so that the shuffle data transfers of this job are all within one
rack, which reduces the cross-rack network resource. In our
designed Hybrid architecture, scale-up machines are in one
rack, so that the small jobs placed on scale-up machines can
run within one rack, resulting in less cross-rack network traffic
from small jobs. Furthermore, this architecture can benefit the
large jobs that cannot be run in a single rack, as there is less
contention of cross-rack network resource from the small jobs.
• This architecture plays an important role in solving the data
placement challenges. For more details, we refer to the data
placement strategy in Section III-D.
• This architecture is easy to implement on Apache YARN
[14]. We will explain this in details in Section IV-A.
How many scale-out machines should be replaced by scale-
up machines? Empirical studies in [6, 12, 20] show that
the relative proportion of small and large jobs in a cluster
remains stable over time. For instance, the scale-out jobs are
considerably fewer in typical workloads, but dominate the
cluster resource usage (e.g., 80% to 99%) [6, 12, 20]. Thus, the
cluster operators only need to replace a few scale-out machines
(e.g., 1% to 20%) with scale-up machines to accelerate the
small jobs.

B. Differentiating Small and Large Jobs

In this section, we introduce how to differentiate small and
large jobs for both recurring and non-recurring jobs.

As we mentioned in Section II-B, different jobs may benefit
differently from scale-up and scale-out machines. To differ-
entiate the jobs based on their job characteristics, the natural
thinking is to use machine learning technique, which takes the
job characteristics as inputs and predicts each job’s type. One
question is what job characteristics we should use as inputs.
We decide to use the number of map/reduce tasks and shuffle
data size as the inputs, due to the reasons below: (1) As shown
in Figure 1, the input data size of a job is one characteristic that
affects the performance of the job on different machines. Since
input data size of a job is linear to the number of map tasks
of the job, we use the number of map tasks; (2) As mentioned
in Section II-B, since scale-up machines can benefit the jobs
with large shuffle data size because of the large memory size
on scale-up machines, shuffle data size is a non-negligible
characteristic; and (3) The works [4, 5] show that the number
of reduce tasks of a job is a factor that affects the performance
of the job on different machines.

For the machine learning, we use the Support Vector Ma-
chine (SVM) [21]. SVM is a classifier that maps the feature
data (i.e., job characteristics) as points in high-dimensional
space, so that the different categories are clearly separated by a
gap. More formally, SVM constructs a hyperplane to separate
the data into two categories, so that the distance from the
hyperplane to the nearest data point on each side is maximized.

We use SVM classifiers because of the reasons below.
• The job characteristics (the number of map/reduce tasks,
shuffle data size) are all continuous features.
• SVM is widely used for binary classification, which matches
our case that divides jobs into two types.
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Fig. 2: Traditional scale-out cluster versus hybrid scale-up/out heterogeneous cluster.

• The points mapped by the characteristics of jobs may not be
linearly separable in space. SVM provides kernel function to
create a nonlinear classifier.
• SVM constructs a clear hyperplane to separate the jobs,
so that we can calculate the distance between a job to the
hyperplane. This property is useful for the job stealing strategy
in Section III-C.

While we can consider more job characteristics as inputs
and use other machine learning models to classify the jobs,
our results in Section IV show that using these three factors
(the number of map/reduce tasks, shuffle data size) can already
determine the types of the jobs with 96.2% accuracy.

For each Hybrid cluster, it requires us to train a corre-
sponding SVM classifier using sufficient training data first.
Then, how we classify recurring and non-recurring jobs is
summarized as follows.

Recurring jobs When a recurring job is submitted to the
cluster, we can predict its job type using the trained SVM
classifier based on the job characteristics (i.e., the number of
map/reduce tasks and shuffle data size).

Non-recurring jobs As to the non-recurring job, only two
job characteristics (the number of map/reduce tasks) are known
a priori. So, the question is what shuffle data size we should
use for non-recurring job.

When determining the type of a non-recurring job, we
argue that the occurrence of classifying a large job as a small
job would be much worse than the occurrence of opposite.
This is because classifying a large job as a small job allows
the large jobs to run on the scale-up machines, which causes
two issues. First, in Hybrid cluster, we leverage the scale-up
machines to accelerate the small jobs, but not large jobs.
The performance of large jobs may be greatly degraded,
compared with the performance on scale-out machines (see
Figure 1). Second, the large jobs consume a large amount
of resources [20] and run for a long time. If we place the
large jobs on scale-up machines when the scale-up machines
are under-utilized, the large jobs may occupy all the scale-up
machines for a long time. In this case, the small jobs have to
wait for the large job and hence the performance of the small
jobs are severely degraded. Consider an extreme case that
multiple large jobs are submitted to the cluster while there
are temporally no small jobs. If we run the large jobs on
the scale-up machines, the whole cluster ends up running the
large jobs. When some small jobs are submitted to the cluster
afterwards, they have to wait for the large jobs for a long time.

On the contrary, classifying a small job as a large job allows
the small jobs to run on the scale-out machines. In this case,

the only impact is that this small job cannot leverage the scale-
up machines to accelerate its execution, which causes minimal
impact and is much less severe than the case above.

Hence, when determining the type of a non-recurring job,
we aim to avoid the occurrence of classifying a large job as
a small job. To achieve this, we treat the shuffle data size of
the non-recurring job as 0. This is because scale-up machines
can benefit the job with large shuffle data size as mentioned
in Section II-B. By treating the shuffle data size of a job as
0, if the job is predicted as “small”, its actual job type will
definitely be “small”, since with the job’s actual shuffle data
size, the job will benefit more on scale-up machines.

Training To train the SVM classifier, we replayed a 25428-
job Facebook workload trace [6] on a real cluster using the
tools provided in [6]. We first ran the 25428 jobs one by one
in the workload on scale-up machines and scale-out machines,
respectively, and then parsed the logs. Based on execution time
of each job on different machines, we labeled the jobs and used
the labeled dataset as the training dataset for SVM classifier.
We applied the radial basis function (RBF) kernel [21] to train
the SVM classifier. In order to avoid over-fitting and get the
best parameters for SVM with RBF kernel, we used the most
common method – cross validation [22].

Summary We leverage a SVM classifier to differentiate the
small and large jobs based on the job characteristics. The
input characteristics for a non-recurring job are the number
of map/reduce tasks and a constant shuffle data size (i.e.,
zero), while the input characteristics for a recurring job are
the number of map/reduce tasks and its shuffle data size.

C. Job Placement Strategy

In this section, we present the job placement strategy to
address the job placement challenges in Section I.
Placing the jobs accordingly to scale-up or scale-out job
queue (for J.1 challenge). First, when the jobs are submitted
to the cluster, the job placement strategy divides the jobs into
scale-up job queue and scale-out job queue, using the machine
learning technique introduced in Section III-B. The scale-up
job queue of jobs are scheduled on scale-up machines, while
the scale-out job queue of jobs are scheduled on scale-out
machines. Next, Hybrid further sorts the jobs in each queue
based on the pre-defined cluster scheduler, such as Fairness
[15] and Capacity [16] and put each queue into a queue. When
new jobs are submitted, we repeat the previous steps to put
the new jobs into corresponding queues.
Job stealing to balance the job loads for scale-up and scale-
out machines (for J.2 and J.3 challenges). In order to solve



the J.2 challenge, we propose a job stealing policy that actively
selects jobs from the scale-up job queue and moves them to
the scale-out job queue for load balancing.

The job stealing steals the entire jobs instead of individual
tasks because of challenge J.3. If the job stealing steals tasks
between scale-up machines and scale-out machines, the tasks
of the same job may be run on both scale-up and scale-
out machines. As aforementioned, running the tasks of a job
on different kinds of machines may lead to extremely poor
performance for the job [3, 8–10]. Therefore, we utilize a
job-level stealing to handle challenge J.3. Notice that the job-
level stealing policy does not incur any overhead since the
stolen jobs are still in the queue and not started yet, and no
data movement is needed using the data placement strategy in
Section III-D.

During job stealing, we propose to restrict the large jobs to
run only on the scale-out machines, but not scale-up machines,
due to the reasons mentioned in Section III-B that large jobs
suffer poor performance on scale-up machines and may occupy
the resources of scale-up machines for a long time, which
also degrades the performance of small jobs. Besides, in a
production workload, most of the jobs are small and the
average arrival time between two small jobs is short [4, 6, 20].
In this case, as the small jobs are submitted very frequent, the
scale-up machines are expected to be under-utilized for only
a short time and will soon become fully-utilized again.

Hence, large jobs are restricted to run on scale-out ma-
chines, while small jobs are not restricted to run on scale-up
machines and are allowed to run on both machines. The details
of job stealing can be described in details as follows:

(i) If a scale-up machine requests for a task but there are
not any scale-up jobs, RM delays to schedule any jobs to the
scale-up machines until the next scale-up job is submitted.

(ii) If a scale-out machine requests for a task but there
are not any scale-out jobs awaiting to schedule, RM actively
“steals” a job from the scale-up job queue and moves it to the
scale-out job queue. Once a job is stolen, all the tasks of this
job are restricted to run on scale-out machines.

Another important issue is which job to steal. In order not
to degrade the performance of the stolen job, it is better to find
a scale-up job that is as close to the hyperplane as possible,
which means that the stolen job is the most similar to scale-
out jobs in the queue of scale-up jobs and hence the stealing
generates minimal impact to the stolen job. Specifically, RM
uses the decision function in Python Scikit Learn library [23]
to compute the distance between a job (represented as a sample
point) and the hyperplane. Then, the job with the smallest
distance is selected, and it becomes a scale-out job and is
restricted to run all its tasks on scale-out machines.

D. Data Placement Strategy

In this section, we introduce the data placement strategy
accompanied with the Hybrid cluster to address data placement
challenges in Section I. By default, there are three replicas
for each data block in the cluster [14]. HDFS’s replication
placement policy is to put one replica in one node in one rack,

another replica in a node in a different (remote) rack, and the
third replica in a different node in the same remote rack. In
other words, the three replicas are placed in two racks; one
replica in a rack and two replicas in another rack. In this paper,
we assume that the default replication factor (i.e., 3) is used.
To solve the challenges of data placement, our data placement
strategy takes advantage of the replication placement strategy.
Placing data on both scale-up and scale-out machines (for
D.1 challenge). To solve D.1 challenge, we can place the
first and second replicas of scale-up/scale-out jobs on scale-
up/scale-out machines, accordingly. However, since jobs may
be stolen between scale-up queue and scale-out queue by
the job stealing policy, the data needs to be placed in the
corresponding machines in order to maintain data locality.

Thus, for a scale-up job, we place its third replica on scale-
out machines, so that even when the job is stolen to the scale-
out queue, RM can still locate its data on scale-out machines,
which improves the performance. As scale-out jobs never run
on scale-up machines, we place the third replica of scale-out
jobs on the scale-out machines on the racks that are different
from the locations of the first and second replicas.

Notice that with the help of Hybrid architecture in Section
III-A, the proposed data placement strategy also satisfies the
default replication placement rule in HDFS that places the
replicas for each data block in two different racks.

IV. PERFORMANCE EVALUATION

We evaluate how the Hybrid cluster performs by real cluster
run and large-scale trace-driven simulation. We consider two
job submission scenarios, batch and online scenarios [2]. The
batch scenario means that the jobs are submitted to the cluster
at the same time. The performance metric in this scenario is
the makespan (i.e., the time to complete all the jobs in the
batch). The online scenario means that each job is submitted
to the cluster at a specific job arrival time. The performance
metric in this scenario is the average job completion time (i.e.,
the end time of a job minus the job arrival time).

A. Experiment Setup and Workload

Real cluster run We configured a Hybrid cluster, and
the configurations of scale-up and scale-out machines are the
same as those mentioned in Section II-B. For Hybrid cluster,
we used 2 scale-up machines from the same rack, and used
40 scale-out machines from 4 different racks, each of which
contains 10 scale-out machines. Hence, Hybrid cluster consists
of 4 scale-out racks and 1 scale-up rack. As to the traditional
clusters, we used 50 scale-out machines from 5 different racks,
each of which contains 10 scale-out machines. Thus, Hybrid
cluster has a similar cost as the traditional cluster.

We implemented the job placement strategy on Hadoop
2.7.1. As introduced in Section II, each job in YARN has
an Application Master (AM) to request resources from the
centralized Resource Manager (RM). Through AMs, different
jobs can specify the locations of their resources, such as spe-
cific machines or racks. Recall that our job placement strategy
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Fig. 3: Makespan results in the batch scenario.
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(d) Cumulative fraction of job comple-
tion time.

Fig. 4: Job completion time results in the real cluster run in the online scenario.

determines whether a job should run on a scale-up or scale-
out machine. The jobs use the ResourceRequest function in
AMs to request resources in the scale-up or scale-out machine
accordingly by specifying the resource-name parameter.

We emulated the data placement strategy on our Hybrid
cluster. We placed the data blocks of each job to the racks
based on our data placement strategy before the jobs were
submitted to the cluster. For the traditional cluster, we use the
default data placement strategy.

Large-scale simulation In order to show the performance
of Hybrid cluster in a large scale, we built an event-based
simulator to simulate the real cluster. In the simulation, the
traditional cluster consists of 600 scale-out machines, which
is organized to 20 racks with 30 scale-out machines each.
The Hybrid cluster consists of 19 racks of scale-out machines
and 1 rack of scale-up machines. In each rack of scale-out
machine, there are 30 scale-out machines. In the rack of scale-
up machine, it contains 6 scale-up machines. In the simulation,
each scale-out machine can run 8 tasks simultaneously, while
each scale-up machine can run 24 tasks simultaneously.

Workload We used a 24442-job Facebook workload (FB-
2010) [6] to evaluate the accuracy of SVM and performance
of Hybrid. For the real cluster run, we randomly selected 1000
jobs from the workload. In the online scenario, the jobs arrived
uniformly in a range of [0, 60]minutes. For the simulation, we
ran the whole workload. In the online scenario in simulation,
the jobs were submitted to the cluster based on the job arrival
time in the trace, which lasts for 24 hours.

Baselines. We compared our Hybrid cluster (Hybrid in
short) against the baselines below.

(1) Fair scheduler [15] assigns resources to different jobs
in a fair manner, so that each job receives the same resources
over time. In order to evaluate the performance of our Hybrid
cluster and proposed job placement and data placement
strategies, we compare Hybrid with both Fair scheduling and

proposed strategies (H-FS-with) to Hybrid cluster with Fair
Scheduling but without proposed strategies (H-FS-w/o), and
traditional scale-out cluster with Fair scheduling (FS).

(2) Capacity scheduler [16] shares a large cluster among
different job queues, and aims to provide resource capacity
guarantee for each queue. In this case, we compare Hybrid
with Capacity scheduling and proposed strategies (H-CS-with)
to Hybrid cluster with Capacity Scheduling but without pro-
posed strategies (H-CS-w/o), and traditional scale-out cluster
with Capacity scheduling (CS).

Note that Hybrid cluster is not only compatible with Fair
and Capacity, but also other schedulers such as Corral [2],
NAS [24], and Co-scheduler [25] by sticking to the proposed
job placement and data placement strategies in the paper.
B. Results

Accuracy of SVM We used the trained SVM to predict
each job in FB-2010. First, we assume all the jobs in FB-
2010 are recurring and have predictable job characteristics.
In this case, the SVM determines the types of all the jobs
in FB-2010 with 96.2% accuracy. Then, we assume 50% of
jobs are recurring – a typical portion of recurring jobs in the
cluster [2, 19, 20], while the remaining jobs are non-recurring.
In this case, the SVM achieves 86.7% accuracy, with no large
jobs being classified as small jobs.

Next, we present the experimental results in the real cluster
run and large-scale simulation. In the experiments below, as
in [2, 19, 20], 50% of the jobs are recurring and the remaining
jobs are non-recurring, unless otherwise specified.

Batch scenario Figure 3(a) shows the makespan of the en-
tire workload in the real cluster run. We see that H-FS-with and
H-CS-with achieve 16% and 14% reduction of the makespan
over FS and CS, respectively, which demonstrates the effec-
tiveness of Hybrid cluster over traditional cluster. The figure
also shows that H-FS-with and H-CS-with significantly outper-
form H-FS-w/o and H-CS-w/o, respectively. Without our pro-
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(a) Average job completion time for
entire workload.

 
 !"
 !#
 !$
 !%
&

&!"

'
(
)
*+
,
)
-.
/
0
-

1
/
2
3
4)
56
/
7
-5
62

)

(b) Average job completion time for
scale-up jobs.
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(c) Average job completion time for
scale-out jobs.
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(d) Cumulative fraction of job comple-
tion time.

Fig. 5: Job completion time results in the simulation in the online scenario.
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(a) Makespan without strategies in the
real cluster run.
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(b) Makespan without strategies in the
simulation.
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(c) Average job completion time with-
out strategies in the real cluster run.
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(d) Average job completion time with-
out strategies in the simulation.

Fig. 6: Measurement results of each strategy in Hybrid.

posed strategies, the scale-out jobs can be placed on the scale-
up machines, which severely degrades the performance of both
scale-up and scale-out jobs. Therefore, H-FS-w/o and H-CS-
w/o are even worse than FS and CS, respectively. The results
demonstrate the effectiveness of our proposed job placement
and data placement strategies. Figure 3(b) shows the makespan
of the entire workload in the large-scale simulation. We see
that Hybrid cluster in a large scale is consistent with the results
in the small-scale real cluster run due to the same reasons.

We further measure the makespan reduction of the scale-
up jobs in the real cluster run, as shown in Figure 3(c). We
see that H-FS-with and H-CS-with achieve a large reduction
of makespan on the scale-up jobs – 53% and 49% reduction
of the makespan over FS and CS, respectively. Hybrid cluster
significantly reduces the makespan of scale-up jobs due to two
reasons: (i) the scale-up machines in Hybrid cluster process the
scale-up jobs much faster; and (ii) the scale-up jobs has less
contention of resources from the scale-out jobs. The figure also
shows that H-FS-with and H-CS-with significantly outperform
H-FS-w/o and H-CS-w/o, respectively, which indicates the ef-
fectiveness of our proposed job placement and data placement
strategies. Figure 3(d) shows the makespan of the scale-up
jobs in the large-scale simulation, which are consistent with
the results in the real-cluster run due to the same reasons.

However, although the makespan of scale-up jobs is reduced
significantly, we observe that the makespan of the entire
workload is reduce by only 16%. This is because the FB-
2010 workload is highly skewed. Most jobs (more than 85%)
in the workload have input data sizes less than 100MB, while
some jobs in the workload have input data sizes extremely
large (more than 5TB). These large jobs are all characterized
as scale-out jobs and dominate the makespan of the entire
workload. This means that after all the scale-up jobs are com-
pleted, there are still many scale-out jobs running in the cluster.
Therefore, although Hybrid cluster reduces the makespan of

scale-up jobs significantly, it reduces the makespan of this
workload by only 16%.

Online scenario In this scenario, the results of H-FS-with
and H-CS-with are normalized to FS and CS, respectively.
Figure 4(a) shows the average job completion time for the
entire workload in the real cluster run. We see that H-FS-
with and H-CS-with achieve 51% and 52% reduction of the
average job completion time over FS and CS, respectively,
which demonstrates the effectiveness of Hybrid cluster. The
figures also show that H-FS-with and H-CS-with significantly
outperform H-FS-w/o and H-CS-w/o, respectively, which in-
dicates the effectiveness of our proposed job placement and
data placement strategies. Figure 5(a) shows the average job
completion time for the entire workload in the simulation,
which is consistent with the result in the real cluster run.

Figures 4(b) and 4(c) show the average job completion
time for scale-up jobs and scale-out jobs in the real cluster
run, respectively. Figures 5(b) and 5(c) shows the average job
completion time for scale-up jobs and scale-out jobs in the
simulation, respectively. Comparing with FS and CS, H-FS-
with and H-CS-with reduce the average job completion time of
scale-up jobs significantly (more than 55%), while the average
job completion time of scale-out jobs is only reduced mildly
(around 12%). The figures also show that H-FS-with and H-
CS-with significantly outperform H-FS-w/o and H-CS-w/o,
respectively, which indicates the effectiveness of our proposed
job placement and data placement strategies.

Figure 4(d) shows the cumulative distributed fraction (CDF)
of job completion times in the real cluster run. We see that H-
FS-with and H-CS-with outperform FS and CS, respectively,
with around 60% improvement at the median for the job
completion time. Especially, Hybrid has more significant effect
on the jobs with job completion time less than 100s. This is
because the scale-up jobs run on scale-up machines, which
process small jobs much faster. Figure 5(d) shows the CDF



of job completion times in the simulation. It confirms our
observations in the real cluster run due to the same reasons.

Summary: In the batch scenario, Hybrid cluster achieves
a mild reduction on the makespan of the entire workload,
while Hybrid cluster reduces the makespan of the scale-up jobs
significantly. In the online scenario, Hybrid cluster reduces the
average job completion time of all the jobs significantly.

C. Effectiveness of Each Strategy

In this section, we aim to investigate the effectiveness of
each strategy in Hybrid. We measure the performance of
Hybrid without our job placement strategy that places jobs ac-
cordingly to scale-up or scale-out machines (H-w/o-P), Hybrid
without job stealing policy (H-w/o-JS), and Hybrid without our
data placement strategy (H-w/o-DPS). Due to space limit, we
only measure them on Hybrid cluster with Fair scheduling and
normalize the results to H-FS-with. Specifically, H-w/o-P uses
the Fair scheduling to schedule the jobs, which does not take
into account the job characteristics. H-w/o-JS does not adopt
the job stealing policy, compared with H-FS-with. H-w/o-DPS
does not use our replication placement technique, and only
uses the default random replication placement of HDFS.

Batch scenario Figure 6(a) shows the makespan of H-FS-
with, H-w/o-P, H-w/o-JS, and H-w/o-DPS in the real cluster
run. We see that the makespan of H-w/o-P is increased by
20%, when comparing with H-FS-with. It indicates that the
performance of H-w/o-P is even worse than the traditional
cluster with Fair scheduling (shown in Figure 3(a)) because of
the following reasons. Without our job placement strategy to
place the jobs accordingly to scale-up or scale-out machines,
(i) the scale-up jobs may be assigned to the scale-out ma-
chines and hence they cannot take advantage of the scale-up
machines; and (ii) some tasks of scale-out jobs run in the
scale-up machines, which is very slow and hence results in
poor performance. We also observe from Figure 6(a) that H-
w/o-JS actually provides the same performance as H-FS-with
in the batch scenario. This is because in the batch scenario,
the large jobs are all submitted to the cluster, which makes
the scale-out machines fully utilized all the time. Thus, even
though H-FS-with is adopted with job stealing policy, the job
stealing actually does not have any effect on this FB-2010
workload as the scale-out machines are never under-utilized.

On the other hand, the makespan of H-w/o-DPS is increased
by 9%, when comparing with H-FS-with. This is because
without our data placement strategy, some tasks may fail
to maintain data locality, which degrades the performance.
Figure 6(b) shows the makespan breakdown in the large-scale
simulation, which is consistent with the results in the real
cluster run due to the same reasons.

Online scenario Figures 6(c) and 6(d) show the average
job completion times of H-FS-with, H-w/o-P, H-w/o-JS, and
H-w/o-DPS in the real cluster run and simulation, respectively.
We see that compared with H-FS-with, the average job com-
pletion time of H-w/o-P is increased by 27%, while the average
job completion time of H-w/o-DPS is increased by 16%. This
is because of the same reasons in Figures 6(a) and 6(b). For
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(a) Makespan versus data size predic-
tion error rate.
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(b) Average job completion time ver-
sus data size prediction error rate.

Fig. 7: Sensitivity analysis.

H-w/o-JS (without job stealing), we see from the figures that
it increases the average job completion time on H-FS-with in
the online scenario by around 19%. This is because the job
stealing policy helps to balance the load among scale-up and
scale-out machines, which improves the performance.

D. Sensitivity Analysis

The benefits of Hybrid cluster depend on the prediction
of job characteristics. In this section, we evaluate the ro-
bustness of Hybrid cluster to the prediction error. We only
show the results for H-FS-with in the simulation due to
space limit. In this experiment, the error rate is defined
as prediction value−real value

real value . A negative error rate means
prediction value < real value. For the error rate of “-100”,
it means prediction value << real value. For example,
suppose the prediction value is 0.5 GB and real value is
16GB. Thus, the error rate is -96.875%≈-100%.

Error in predicted shuffle data size Although previous
studies show that the prediction error of job characteristics can
be as low as 6.5% [2], we varied the error rate of predicted
job shuffle data size by up to 100%. The results below are
normalized to the result of H-FS-with without error.

Figures 7(a) shows the makespan versus error in data size
in the batch scenario. The figure indicates that Hybrid cluster
can maintain very similar makespan when the error is less
than 30%. However, as the error increases, the makespan is
also increased. This is because as the error increases, the job
type of more jobs may be wrongly decided and some scale-out
jobs may be run on scale-up machines, reducing the benefits of
Hybrid cluster. Figures 7(b) shows the average job completion
time versus error in data size in the online scenario. Similar
results are observed: the Hybrid cluster maintains similar
performance when the error is low; however, as the error
increases, the performance gets worse. The results demonstrate
that the performance of Hybrid cluster is not quite sensitive
to small error in predicted job data size.

V. RELATED WORK

Li et al. [26–28] focused on the performance of Hadoop
on HPC environments. They investigated the feasibility of
replacing HDFS with the remote file system on HPCs, and
proposed to dynamically select the appropriate file systems
based on the job characteristics. Our paper focuses on a
different perspective to accelerate the big data analytics.



Due to the diversity of job characteristics, several studies [3–
5] advocate the use of scale-up machines instead of the
traditional scale-out machines to handle such diversity. Ap-
puswamy et al. [4] conducted a comprehensive measurement
study and found that scale-up is sometimes better in some
cases than scale-out for specific workloads. Motivated by these
works, we aim to design the hybrid scale-up/out cluster to
improve the performance of current big data analytics.

The scheduling problem in heterogeneous cluster has at-
tracted much attention [3, 8–10]. They identify the causes
of poor performance on heterogeneous cluster and improve
the performance using techniques such as scheduling backup
copies and estimating the job progress and prioritizing dif-
ferent jobs based on their progress. However, none of these
proposals consider the diversity of jobs in their solutions. In
this paper, we leverage the observation that different machines
may result in different performance for various jobs and design
a Hybrid cluster to accelerate big data analytics.

Recently, there have been many studies [2, 12, 15, 29–
31] focusing on designing cluster schedulers to improve the
performance of the clusters (e.g., throughput and SLOs). In
this paper, we do not aim to replace these proposed schedulers,
but aim to explore a novel concept for better performance.
Our work is orthogonal to these studies and can be combined
with them for performance improvement. For example, we
can first utilize our work to place the jobs and data onto
different machines, and then apply the cluster schedulers to
further schedule jobs on scale-up or scale-out machines.

VI. CONCLUSION AND FUTURE WORK

In this paper, we aim to design a Hybrid scale-up/out cluster
to improve the performance of workloads that have diverse job
characteristics. To solve the job and data placement challenges,
we propose a Hybrid architecture with corresponding job
placement strategy and data placement strategy to address
the challenges. We implement Hybrid on top of YARN.
We evaluate Hybrid by running a production workload (FB-
2010) with both real cluster run and large-scale trace-driven
simulation. The results show that accompanying with our
strategies, Hybrid cluster can reduce the makespan by 16% and
the median job completion time by 60%, compared to tradition
scale-out cluster with state-of-the-art schedulers. In the future,
we plan to further explore a more complex Hybrid cluster with
more kinds of machines to fit more diverse workloads.
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