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Abstract—The variety of instance types available on cloud
platforms offers enormous flexibility to match the requirements
of applications with available resources. However, selecting the
most suitable instance type and configuring an application to
optimally execute on that instance type can be complicated
and time-consuming. For example, application parallelism flags
must match available cores and problem sizes must be tuned
to match available memory. As the search space of application
configurations can be enormous, we propose an automated
approach, called ParaOpt, to automatically explore and tune
application configurations on arbitrary cloud instances. ParaOpt
supports arbitrary applications, enables use of custom optimiza-
tion methods, and can be configured with different optimization
targets such as runtime and cost. We evaluate ParaOpt by
optimizing genomics, molecular dynamics, and machine learning
applications with four types of optimizers. We show with as few
as 15 parameterized executions of an application, representing
between 1.2%-26.7% of the search space, that ParaOpt is able
to identify the optimal configuration in 32.7% of experiments
and a near-optimal configuration in 83.2% of cases. As a result
of using near-optimal configurations, ParaOpt reduces overall
execution time by up to 85.8% when compared with using the
default configuration.

I. INTRODUCTION

Traditionally users have meticulously optimized software to

work with particular hardware. However, increasing hardware

heterogeneity and availability of cloud infrastructure now

allow users to customize computing environments for any

problem. While this flexibility can improve efficiency and

decrease costs, it also creates new challenges for users, not

least of which is the enormous search space of possible

software and hardware configurations. Utilizing default appli-

cation configurations or selecting suboptimal configurations

may result in increased execution time [1] and costs [2].

This configuration optimization problem is particularly chal-

lenging when considering the myriad choices available to

cloud users. For example, at the time of writing Amazon

Web Services (AWS) offers over 200 distinct virtual server

configurations, referred to as instance types, ranging in cost

from 0.5 cents per hour to more than $30 per hour and with

resources ranging from one to hundreds of CPUs and from

gigabytes to terabytes of memory. Application performance

may vary significantly depending on the configuration of

the application and on which instance type it is executed.

Applications may have hundreds of parameters that directly

affect performance—far too many for a user to manually

explore on even a single instance type.

In this paper we present ParaOpt, a system that automates

the optimization of application configurations for cloud in-

stances subject to user-specified optimization targets, such as

time or cost. ParaOpt is implemented as a service which man-

ages the execution of experiments. Each experiment consists

of multiple trials, each of which aims to explore a unique

combination of application parameters on a selected instance

type. ParaOpt applies a user-specified optimization strategy to

determine the parameter combination for each trial. ParaOpt

offers an extensible interface via which arbitrary optimization

strategies can be applied.

We evaluate ParaOpt by optimizing genomics, molecu-

lar dynamics, and machine learning applications on various

cloud instance types using four optimization strategies. Using

ParaOpt’s Bayesian optimizer strategy, we find the optimal

configurations for 55.8% of experiments with two parameters

and near-optimal, within 10% of optimal, for 77.5% of ex-

periments with three and four parameters. By using ParaOpt-

identified configurations we reduce application execution time

by up to 85.8% over the default configuration.

The remainder of this paper is organized as follows. In §II

we formulate the optimization problem. In §III we outline

example applications. In §IV we present the ParaOpt system

architecture. In §VI we evaluate the performance of ParaOpt.

Finally, in §VII we discuss related work and in §VIII we

summarize our contributions.

II. REQUIREMENTS AND PROBLEM FORMULATION

In this section we describe the key requirements for opti-

mizing application configurations and formulate the problem.

A. Requirements

We identify the following requirements as necessary to

establish a flexible and robust optimization platform.

Application agnostic. Applications may have a wide range

of behaviors, dependencies, runtimes, and configurations.

Scale to large search spaces. Applications may offer many

configurable parameters, each of which can affect runtime and

accuracy. For example, some bioinformatics applications have

more than 50 parameters, creating a search space with millions

of potential configurations.
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Support custom optimization objectives. Users may have

various priorities and constraints which define the optimal

application configuration. For example, they may have a

limited budget to perform the computation, making cost the

priority, or they may have a strict deadline, making run time

more important.

Support custom optimizers. Users may want to select

specific optimization strategies when optimizing configuration

for a particular application.

Resource agnostic. Users may wish to use different cloud

provider based on cost, performance, funding support, and/or

collaboration needs. Cloud providers offer different interfaces

and instance types.

Extensible to other information. The optimal configura-

tion for an application is often dependent on other features,

such as the data being processed. For example, optimally

configuring an application to analyze a small dataset may

result in a small buffer size. Using the same configuration

to analyze a large dataset could result in thrashing that

would incur execution overheads. Therefore, ParaOpt must be

extensible to consider external factors, such as data size, when

optimizing configurations.

B. Problem formulation

We define a configuration �x as a multi-dimensional vector

that represents the parameters one may want to optimize.

A user would like to find an optimal configuration for an

application that yields some user-specific constraints (i.e.,

runtime, cost, or quality of results).

We denote the runtime, the monetary cost, and the quality of

results as T (�x), M(�x), and Q(�x), �x ∈ X, respectively, where

X is the full configuration space. To evaluate the configuration

�x, we define the utility function U(T (�x),M(�x), Q(�x)) as a

function of both runtime and monetary cost. The optimization

objective is to maximize the utility, while ensuring that the

runtime and monetary cost are no more than the maximum

acceptable runtime Tmax and monetary cost Mmax, and the

quality of results is higher than the minimum acceptable

quality Qmin. Thus, the problem can be formulated as follows:

max
�x∈X

U(T (�x),M(�x), Q(�x)),

s.t. T (�x) ≤ Tmax,M(�x) ≤ Mmax, Q(�x) ≥ Qmin.
(1)

III. APPLICATION USE CASES

To explore the generalizability of ParaOpt we focus on three

distinct application domains.

A. Variant Calling

A variant caller is a bioinformatics application used to detect

mutations in DNA sequencing data—an important step in iden-

tifying genetic causes of disease. Researchers have developed a

large number of variant callers, each using distinct algorithms

with different accuracy and performance characteristics [3].

Here we study three common variant callers: Platypus [4],

Strelka2 [3], and GATK3 [5].

Typically, variant callers offer a number of configurable

parameters that influence result accuracy and algorithm per-

formance. For example, GATK3 offers more than 50 param-

eters. To better understand the performance of these variant

callers we conducted preliminary profiling experiments on

a c5.2xlarge instance from AWS. Using aligned DNA se-

quencing data, we varied some selected parameters (e.g., the

number of CPU cores, buffer size, and memory size) of these

callers. We found that the optimal configuration decreased

execution time by 86% and 47% when compared with the

default configuration for Platypus and GATK3, respectively.

B. Molecular Dynamics

Large-scale Atomic/Molecular Massively Parallel Simula-

tor [6] (LAMMPS) is a well-known application for molecular

dynamics simulations. It can model ensembles of particles in

a liquid, solid, or gaseous state using a variety of interatomic

potentials and boundary conditions. LAMMPS is designed

to be efficiently executed on single processor computers and

on parallel computers using MPI [7]. LAMMPS also uses

the Kokkos [8] library to enable execution on accelerator

architectures.

To ensure efficient parallel execution of LAMMPS, the MPI

and Kokkos-related parameters must be set appropriately. We

conducted a preliminary experiment by using LAMMPS to

carry out a stochastic rotation dynamics simulation of a 2D

rigid box of particles. We ran LAMMPS on a c5.2xlarge

instance and varied the number of MPI processes and the

number of Kokkos threads. Our results indicate that a near-

optimal configuration can decrease the runtime by 60× when

compared with the worst configuration.

C. Machine Learning

TensorFlow [9] and Keras [10] are two of the most com-

monly used machine learning libraries. Both libraries offer a

huge number of configurable parameters such as the number

of threads, GPU memory per process, and batch size.

In a preliminary experiment we explored the training of two

convolutional neural networks (CNNs) using CIFAR10 [11]

and MNIST [12] datasets, with TensorFlow and Keras, re-

spectively. We ran the training on a c5.2xlarge instance and

varied the number of CPU processes, number of CPU threads,

blocking time of threads, and batch size. By tuning two to

four parameters we could decrease runtime with TensorFlow

by 79% and 25% over the worst and default configurations,

and with Keras by 99% and 66% over the worst and default

configurations.

IV. USING PARAOPT

Users interact with ParaOpt by defining an experiment. The

experiment includes the application name, the parameters that

can be modified, the environment in which to perform the

experiment, and a template command line invocation to run

the application. An example experiment definition is given in

Listing 1. Parameter definitions must specify the name of the

parameter and its type (e.g., int). Users may optionally specify
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the bounds of continuous or discrete values. The compute

environment section of the experiment definition determines

how the experiments will be executed. This includes the

instance type to explore as well as the Amazon Machine Image

(AMI) to be used. The AMI provides a base image which must

contain the application and any dependencies.

Listing 1: An example experiment configuration.

{
"tool_name": "strelka_c5.2x_grid",
"parameters": [

{
"maximum": "8",
"minimum": "1",
"name": "nCPUs",
"type": "int"

},
{
"maximum": "16",
"minimum": "2",
"name": "totalMem",
"type": "int"

},
],
"compute": {

"ami": "ami-048fd10984c33048b",
"instance_model": "c5.2xlarge",
"type": "ec2"

},
"command_template_string": "

bam=\"data/C440.TCGA-BR.4_gdc_realn.bam\"
ref=\"data/GRCh38.d1.vd1.fa\"
strelka/bin/configureStrelkaGermlineWorkflow.py --ref

${ref} --bam ${bam} --runDir res
res/runWorkflow.py -m local -j ${nCPUs} -g ${totalMem}"

}

When defining an experiment users may also specify the op-

timization strategy to be applied. The experiment includes the

type of optimizer (e.g., Bayesian, Grid, Random, Coordinate,

or user-defined) and any optimizer-specific arguments. The

optimizer configuration also states how many configurations

should be explored for each parameter. The example shown

in Listing 2 defines an experiment that uses Grid search to

search eight nCPUs values and fifteen totalMem values.

Listing 2: An example optimizer configuration.

{
"optimizer":
{
num_configs_per_param: [8, 15]
type: "grid"

}
}

ParaOpt creates a set of trials for each experiment. A trial

is a fully parameterized invocation of the application. ParaOpt

automatically selects appropriate values for each configurable

parameter, deploys the trial and monitors its execution. Once

the trial execution completes, ParaOpt records the application

runtime, selected parameters, and information about the re-

source used for execution. The results of an experiment are

stored in the ParaOpt database to be returned to the user

and consumed by ParaOpt to inform subsequent trials. These

results are then made available to the user through the Web

interface. Results are used to bootstrap new experiments and

for guiding experiments on different resource types. ParaOpt

can also be used for online profiling. In this mode users

can execute production workloads using ParaOpt to select

appropriate configuration parameters.
ParaOpt defines a modular objective function interface that

allows users to implement a Python function that wraps the

trial execution and returns a value for that trial (e.g., time,

cost, or accuracy). Users can extend this model by registering

their own objective functions when initializing ParaOpt.

AWS

Runner

Globus Auth

REST API

/POST
<experiments>

<optimizer>

ParslOptimizer

Instance

Worker

Experiment

Return
<result>

Experiment

Trials

Azure
Instance

Worker

Google
Cloud Instance

Worker

Result Database

Redis Store

Fig. 1: System architecture

V. ARCHITECTURE AND IMPLEMENTATION

Fig. 1 depicts the high-level architecture of ParaOpt. We

implement ParaOpt as a set of modular microservices. The

main components of ParaOpt are the Redis Store, Result
Database, Frontend Service, Optimizer, Runner, and Worker.

ParaOpt uses Docker-compose to dockerize all system compo-

nents (except the Worker). This enables reliable and scalable

deployment of the dynamic components of the system and also

simplifies deployment by others.

A. Interfaces
The Frontend Service is the user-facing interface to ParaOpt.

It provides a RESTful API for users to submit experiments

and monitor the status of experiments. The Frontend Service

parses the experiment description and creates a unique record

in the Redis Store. This record is updated as the experiment

progresses and users may at any time inspect the status

of the experiment via the Frontend Service. We provide a

Python Software Development Kit (SDK) and Command Line

Interface (CLI) to enable programmatic interaction with the

ParaOpt service. Listing 3 shows an example of using the CLI

to submit a new experiment to ParaOpt.

Listing 3: Example experiment submission via the CLI.

$$ paraopt --experiment target_experiment_file \
--optimizer target_optimizer_file

The Frontend Service is secured using Globus Auth [13].

Users can authenticate with ParaOpt using one of hundreds of

supported identity providers, such as their institutional iden-

tities or Google accounts. The Frontend Service implements

an OAuth 2 authentication flow in which users are redirected

to authenticate with their selected identity provider. After

successful authentication, the Frontend Service retrieves an

access token that is used to obtain information about the user.
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B. Redis Store and Result Database

ParaOpt uses a Redis database to store information about

experiments and trials. Specifically, when an experiment is

submitted, ParaOpt creates a record for the experiment in-

cluding the application name, parameters to be explored, range

of values to explore for each parameter, resource information

such as instance type, command line template for parametrized

invocation of the application, and information about the op-

timizer. As ParaOpt divides up the experiment into trials,

it stores a record for each trial in the Redis Store thereby

ensuring that trials are not repeated and that the status of the

experiment can be tracked and retrieved by users.

ParaOpt also maintains a separate Result Database using

AWS RDS. The database records the results of each trial,

including the application name, instance type, parameter con-

figuration, and runtime. ParaOpt uses this database to select

trials and to bootstrap exploration of the search space. Users

may also retrieve information from the database to infer the

optimal parameter configurations from prior experiments.

C. Runner and Worker

ParaOpt uses a Runner to manage the execution of trials

in an experiment. The Runner is responsible for acquiring the

appropriate instance type, submitting the trial for execution on

that instance, and recording the result of the trial. We build the

Runner on Parsl [14], a parallel scripting library for Python.

Parsl’s provider interface abstracts the complexity of using

a wide range of clouds, clusters, and supercomputers, and

therefore enables ParaOpt to dynamically provision resources

from almost any computing system. Currently, Parsl supports

three major cloud providers: Amazon AWS, Microsoft Azure,

and Google Cloud.

Once the Runner is notified of an experiment, it first

determines the instance type to be provisioned from the

experiment description. Using Parsl it provisions an instance of

that type from the specific cloud provider and deploys a Parsl

Worker on that instance to manage the execution of the trials.

ParaOpt decomposes the experiment into a set of trials, each a

parameterized execution of the application. When the Worker

is idle it requests a single trial from the Runner. The Worker

then executes the trial and returns the result (or the exception

on failure) to the Runner. The worker also monitors and

records resource usage throughout the trial. The experiment

concludes when the stopping condition is met. The results of

each trial are stored in the RDS database.

D. Optimizer

The Optimizer evaluates prior executions and selects can-

didate values for each parameter for the next trial. We have

designed the Optimizer module to be flexible and extensible

such that different optimization strategies can be selected

and new strategies can be added. ParaOpt currently supports

four optimization strategies: Random search [15], Grid search,

Coordinate search [16], and Bayesian optimization (BO) [17],

Random search randomly selects a value for each param-

eter. Although Random search is a simple strategy, it can

be efficient in some cases such as hyper-parameter tuning in

machine learning [15].

Grid search exhaustively searches the full configuration

space. The user selects the number of steps for each parameter

and the optimizer will search the Cartesian product of these

parameters. This strategy is useful for those applications that

have a relatively small search space.

Coordinate search optimizes each parameter indepen-

dently. It iteratively selects each coordinate (i.e., parameter)

in turn and optimizes that coordinate with the remaining

parameters kept fixed.

Bayesian optimization (BO) is a technique used to find

the global optima of a function whose evaluation is expensive.

Generally, the objective function (e.g., utility) does not have a

mathematical expression. BO creates a surrogate model (e.g.,

Gaussian Process) for the objective function. For each trial,

a sample point of the objective function is evaluated and the

surrogate model is updated according to the sampled point.

Based on the surrogate model, BO can predict the value of

any given point, as well as the uncertainty. BO defines an

acquisition function, which is a function of the prediction value

and uncertainty. High prediction value and high uncertainty

both correspond to high acquisition function values. At each

step, the point which maximizes the acquisition function is

chosen as the next point to sample. We build BO based on

an existing package [18], leveraging Gaussian Process as the

surrogate model and upper confidence bound (UCB) [19] as

the acquisition function. We have also extended this package

to support discrete integer values. ParaOpt can support other

acquisition functions.

The optimizer will terminate upon satisfaction of the stop-

ping condition. Currently the stopping condition can be defined

as follows: the experiment reaches a timeout, maximum num-

ber of trials, maximum budget, or the increased performance

does not exceed a threshold.

VI. EVALUATION

We evaluate the ability of ParaOpt to identify optimal con-

figurations for real applications on different cloud instances.

A. Experimental Setup

Applications. Due to limited budget, we select only a few

parameters for each application to show the effectiveness of

ParaOpt. Specifically, we perform experiments using Platypus

with two and three parameters (P-2D and P-3D), Strelka2

with two parameters (S-2D), GATK3 with two parameters

(G-2D), LAMMPS with Kokkos with two parameters (L-2D),

TensorFlow with two and three parameters (TF-2D and TF-
3D), Keras with two, three, and four parameters (K-2D, K-3D,

and K-4D). Table I summarizes the the parameters explored

and the size of the resulting search space for each experiment.

For the variant callers (P-2D, P-3D, S-2D, and G-2D), we

used DNA sequencing data for a Stomach Adenocarcinoma

sample [20] from The Cancer Genome Atlas as the input

dataset and with GRCh38.d1.vd1 as the reference genome
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[21]. For LAMMPS (L-2D), we carry out a stochastic rota-

tional dynamics simulation of a 2D rigid box of aspherical

particles in coarse-grained solvent, including self-diffusion

and viscosity [22]. For TensorFlow (TF-2D and TF-3D), we

modify the convolutional neural network from the TensorFlow

tutorial [23] to classify the CIFAR10 [11] dataset. For Keras

(K-2D, K-3D, and K-4D), we modify the CNN model from

the Keras example [24] to classify the MNIST dataset [12].

TABLE I: Experiment summary showing the parameters ex-

plored and the size of the search space.

Experiment Parameter range
[min, max, total steps]

Search
space

P-2D nCPU [1, 8, 8], bufferSize [10000, 100000, 10] 80
P-3D P-2D, minFlank [1, 40, 10] 800
S-2D JOBS [1, 8, 8], MEMGB [2, 16, 15] 120
G-2D MEM [512, 16384, 7], nct [1, 8, 8] 56
L-2D NP [1, 8, 8], KT [1, 8, 8] 64
TF-2D inter threads [0, 8, 9], intra threads [0, 40, 12] 108
TF-3D TF-2D, kmp bt [0, 100, 11] 1188
K-2D intra threads [0, 40, 7], batch size [16, 2048, 8] 56
K-3D K-2D, inter threads [0, 8, 4] 224
K-4D K-3D, kmp bt [0, 60, 5] 1120

ParaOpt deployment. We deploy the Frontend Service,

Runner, and Optimizer using docker on an AWS t2.micro

instance, which has 1 CPU and 1 GB memory. Workers are

deployed on instances from the C5 family (optimized for

compute-intensive workloads). We use c5.large, c5.xlarge, and

c5.2xlarge instance types, with 2, 4, and 8 cores as well as 4,

8, and 16 GB RAM per instance, respectively.

Optimizers. We apply the Random search, Grid search,

Coordinate search, and Bayesian optimization optimizers to

each experiment. We use Grid search to identify the optimal

configuration and Random search and Coordinate search are

used as baselines for comparison. For Bayesian optimization,

we set the number of initial trials to 3, and use upper

confidence bound (UCB) [19] as the acquisition function.

Note that our aim is not to compare the performance of

various strategies, but to demonstrate ParaOpt’s ability to apply

different optimizers.

Metrics. We use two metrics, utility and cost normalized to

the optimal (CNO), to evaluate performance. We define utility

as:

U(�x) =
1

C(�x)
, (2)

where C(�x) is the cost (e.g., runtime or monetary cost) of a

given configuration �x. We define CNO as:

CNO =
C(�x)

C(�x∗)
, (3)

where �x is the best configuration found by ParaOpt and �x∗ is

the optimal configuration of the entire search space (attained

from the Grid search). We configure the optimizer to maximize

the utility (thus minimize the cost). Generally, the smaller

the CNO, the better the configuration. The best CNO is 1,

which means the current best configuration is optimal. We

also report the search cost, which is the aggregate runtime of

an experiment using different parameter configurations.

B. Optimization Strategy

We first evaluate the impact of the optimization strategy

on ParaOpt performance. We select runtime minimization as

the optimization objective. We limit the number of trials to

15. The Bayesian optimizer starts with 3 initial random trials,

and then performs 12 consecutive trials on different parameter

configurations (in total 15 trials). We repeat each experiment

at least 20 times and collect all results. All experiments were

conducted on c5.2xlarge instances.

(a) CNO.

(b) Normalized search cost.

Fig. 2: Applications with various optimizers on ParaOpt. Error

bars show the 10th and 90th percentiles of CNO.

Fig. 2a shows the median CNO of each application for the

default configuration and when using the Random, Coordinate,

and Bayesian optimizer. We observe the best performance

from the Bayesian optimizer for all applications except L-

2D. To understand this result, we investigated the grid search

on L-2D and found that the number of Kokkos threads KT
is monotonic in runtime regardless of the number of MPI

processes NP. This effectively reduces the search space to

one dimension for the Coordinate optimizer. Because almost

70% of the configurations exceeded the timeout, a large

part of the search space gives a low value in the surrogate

model. The low values near the optimal will decrease both

the predicted value and the uncertainty for the optimal point.

As a result, the Bayesian optimizer is less likely to select the

optimal point. For S-2D and G-2D, the Random, Coordinate,

and Bayesian optimizers all achieve a similar CNO. This is

because for both applications, the majority of configurations

result in near-optimal performance (within 20% of optimal),

while the optimal performance is achieved with only a few

configurations.
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In summary, after 15 trials, ParaOpt is able to identify the

optimal configuration in 55.8% of 2D experiments and a near-

optimal (within 10% of optimal) configuration in 88.3% of 2D

experiments. On average, ParaOpt reduces runtime by 33.2%

compared with using the default configuration.

Fig. 2b shows the median search cost (normalized to the

search cost of performing a grid search) of each application.

Using the default configuration has no search cost. Since the

Bayesian optimizer tends to search towards the space that has

the highest confidence to be the optimal configuration (hence a

higher confidence to have the lowest runtime), it is more likely

(not guaranteed) that the Bayesian optimizer has the lowest

search cost. L-2D shows this clearly, since poor configurations

will take much more time than good configurations. The

Bayesian optimizer outperforms both Random and Coordinate.

The smaller error for the Bayesian optimizer implies better

stability than other strategies.

C. Search Space Size

Fig. 3 compares the median CNO and the median search

cost over various search space sizes for Platypus, TensorFlow,

and Keras. We include the CNO of the default configuration

for comparison, where the default configuration has no search

cost. We observe that the CNOs for the Random and Co-

ordinate optimizers worsen as search space dimensions are

added, while the CNO of the Bayesian optimizer is relatively

stable regardless of the number of dimensions. This is because

it is difficult for the Random and Coordinate optimizers to

explore the search space sufficiently as the search space size

increases. For example, for the K-2D experiment, in 15 trials,

the Random optimizer has almost 30% probability of finding

the optimal and the Coordinate optimizer can explore both

parameters sufficiently. However, for K-4D, within 15 trials,

the Random optimizer has only a 2% probability of finding

the optimal and the Coordinate optimizer can only explore 2

or 3 parameters due to the limited number of trials.

Increasing dimensionality and search space size signifi-

cantly increases the difficulty of finding the optimal con-

figuration. For example, after 15 trials, ParaOpt has only a

20% chance to find the optimal configuration. After searching

1.2%-6.6% of the search space, the likelihood of finding a

near-optimal configuration increases to 77.5% in 3D and 4D

experiments. On average, ParaOpt reduces runtime by 55.4%

in 3D and 4D experiments when compared with using the

default configuration.

D. Number of Trials

Next, we investigate how the number of trials impacts

optimizer performance. Here we use the same experiment

settings as described in §VI-C and vary the number of trials

from 5 to 25 (including three initial configurations for the

Bayesian optimizer).

Fig. 4a and Fig. 4b show the median CNO and the median

search cost for the K-4D experiment, respectively.

When restricted to only five trials, the Bayesian optimizer

generates a slightly worse CNO than the Random optimizer.

(a) CNO.

(b) Normalized search cost.

Fig. 3: Comparison of P-2D, P-3D, TF-2D, TF-3D, K-2D, K-

3D, and K-4D. Error bars show the 10th and 90th percentiles.

(a) CNO.

(b) Normalized search cost.

Fig. 4: Results of K-4D experiments with varying the number

of trials. Error bars correspond to the 10th and 90th percentiles.

This is because there is insufficient data for the Bayesian

optimizer to reduce the confidence interval. However, as the

number of trials increases, the Bayesian optimizer starts to

outperform the other optimizers.

E. Optimization Objectives

To explore ParaOpt’s ability to support different objective

functions we now optimize Strelka2 (S-2D) for cost on three

instance types. To illustrate the problem we first perform a grid

search of S-2D on c5.large, c5.xlarge, and c5.2xlarge instance

types, with 2, 4, 8 cores, and 4, 8, 16GB RAM. Fig. 5 shows
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the MEMGB (amount of memory in GB) plotted against the

JOBS (number of CPUs), where the color indicates the total

cost. The cost is computed as the runtime multiplied by the

unit price of the instance.

The corresponding value of (MEMGB, JOBS) reported in

the figure shows the monetary cost to run S-2D on the smallest

instance type that can accommodate that configuration. For

example, the value of (7, 4) corresponds to the cost to run

on c5.xlarge, as that is the smallest instance type that can

accommodate 7 GB of RAM and 4 CPUs.

Fig. 5: Monetary cost map of S-2D.

We find that the c5.large instance type is the cheap-

est ($0.028), followed by c5.2xlarge ($0.030) and c5.xlarge

($0.031). The runtimes for S-2D on the c5.large, c5.xlarge,

and c5.2xlarge are 19.6, 10.8, and 5.3 minutes, respectively.

This leads to a trade-off between runtime and monetary cost.

Next, we select monetary cost as the optimization objective

and compare the performance of the Random, Coordinate, and

Bayesian optimizers using the same experimental settings as

described in §VI-B. The results are shown in Fig. 6. For all

experiments, ParaOpt finds a configuration within 10-15% of

the optimal cost within 15 trials.

Fig. 6: Parameter optimization for S-2D with ParaOpt.

VII. RELATED WORK

Practices in cloud configurations. Google Cloud offers

a service [25] which monitors the average resource usage

and provides recommendations to reduce cost. Amazon offers

a rightsizing recommendation service [26], which suggests

when to downsize or terminate instances based on analysis

of resources usage. Unlike ParaOpt, these services are only

capable of optimizing for cost and do not support arbitrary

application parameterizations.

Selecting cloud configurations for specific applications.
Several systems have been developed to aid selection of the

“best” cloud configuration for a given application. CherryP-

ick [27] leverages Bayesian optimization to build performance

models for applications. It aims to find the optimal instance

types and cluster size to minimize cost under a time budget.

Similarly, Ernest [28] aims to select the number and type of

instances for running jobs in AWS EC2. To do so, it creates

efficient performance predictors by applying machine learning

to data gathered from sample runs. We have also previously

explored the use of automated experiment design to efficiently

evaluate different cloud instance types for executing computa-

tional workflows [29]. While ParaOpt can be used to identify

optimal instance types it is not limited to instance selection

but also to identify optimal application configuration in a high-

dimensional space. Lynceus [30] automatically provisions and

tunes the parameters for analytics applications on clouds. It

implements a budget-aware optimization method to identify

the best configuration. This work is orthogonal to ours and

could be integrated as an optimization strategy in ParaOpt.

Tuning parameters for specific applications. Similar ap-

proaches have been used to automate workflow parameter tun-

ing. For example, many studies focus on turning the parame-

ters of Hadoop MapReduce applications for performance [31]–

[33]. However, these methods have limited adaptability for

other types of applications and require many experiments for

each new predictive task. Aken et al. [34] and Mahgoub et
al. [35] both leverage Machine learning models for auto-tuning

parameters for database systems [34], [35] and distributed

stream processing [36]. ParaOpt shares similar approaches

with these systems; however it focuses on enabling a frame-

work to support different optimization strategies, application

types, and objectives.

Optimization methods. Bayesian optimization is a well-

established approach to deal with complex optimization prob-

lems with large search spaces [17]. Bayesian optimization has

been widely used to aid selection of cloud configurations [27],

[37], optimizing parameters of deep neural network [17], and

system configurations [38].

Performance prediction. Wang et al. [39] use machine

learning models to predict the performance of storage systems

as a function of input workloads, requiring no knowledge of

the storage system. However, building such models requires a

large amount of training data. Performance prediction is also

addressed by systems such as PARIS [40], which apply a data-

driven approach with a hybrid offline and online data collec-

tion and modeling framework to provide accurate performance

estimations. However, PARIS focuses predominantly on video

encoding and latency. ARIA [32] uses historical traces and

dynamically adjust resource allocation.

VIII. CONCLUSION

ParaOpt allows users to automatically configure arbitrary

applications on heterogeneous cloud instance types using cus-

tom optimizers and objectives. Our experiments on AWS using
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six different applications show that ParaOpt can identify near-

optimal configurations within 15 trials in 83.2% of cases. The

ParaOpt-identified configurations decrease execution time by

up to 85.8% when compared with using default configurations.

ParaOpt is available on Github: https://github.com/globus-

labs/ParaOpt.
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