
Performance Measurement on Scale-up and Scale-out Hadoop with Remote and
Local File Systems

Zhuozhao Li, Haiying Shen, Walter Ligon, and Jeffrey Denton
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {zhuozhl, shenh, walt, denton}@clemson.edu

Abstract—MapReduce is a popular computing model for
parallel data processing on large-scale datasets, which can vary
from gigabytes to terabytes and petabytes. Though Hadoop
MapReduce normally uses Hadoop Distributed File System
(HDFS) local file system, it can be configured to use a remote
file system. Then, an interesting question is raised: for a given
application, which is the best running platform among the
different combinations of scale-up and scale-out Hadoop with
remote and local file systems. However, there has been no
previous research on how different types of applications (e.g.,
CPU-intensive, data-intensive) with different characteristics
(e.g., input data size) can benefit from the different platforms.
Thus, in this paper, we conduct a comprehensive performance
measurement of different applications on scale-up and scale-
out clusters configured with HDFS and a remote file system
(i.e., OFS), respectively. We identify and study how different
job characteristics (e.g., input data size, the number of file
reads/writes, and the amount of computations) affect the per-
formance of different applications on the different platforms.
This study is expected to provide a guidance for users to choose
the best platform to run different applications with different
characteristics in the environment that provides both remote
and local storage, such as HPC cluster and cloud environment.

I. INTRODUCTION

MapReduce [11] is a framework designed to process a
large amount of data in the parallel and distributed manner
on a cluster of computing nodes. Hadoop, as a popular open
source implementation of MapReduce, has been deployed in
many large companies such as Yahoo! [10] and Facebook
[18]. Also, many high-performance computing (HPC) sites
[1] extended their clusters to support Hadoop MapReduce.
HPC differs from Hadoop on the configuration of file
systems. In Hadoop Distributed File System (HDFS), data is
stored in the compute nodes, while in HPC, data is usually
stored on remote storage servers. Hence, for traditional
Hadoop in HPC clusters, we need to first transfer the data
from the remote storages to the local storages, which is
costly and not time-efficient. This inspires us to configure
Hadoop with remote file systems on HPC clusters. For
example, the Clemson Palmetto HPC cluster successfully
configured Hadoop by replacing the local HDFS with the
remote Orange File System (OFS) [1], as shown in Figures
1 and 2.

In the last decade, the volumes of computation and data
have increased exponentially [6, 15]. Real-world applica-
tions may process data size up to the gigabytes, terabytes,

petabytes, or exabytes level. This trend poses a formidable
challenge of providing high performance on MapReduce
and motivates many researchers to explore to improve the
performance. While scale-out is a normal method to improve
the processing capability of a Hadoop cluster, scale-up
appears as a better alternative for a certain workload with
a median data size (e.g., MB and GB) [8, 13]. Scale-up
is vertical scaling, which refers to adding more resources
(typically processors and RAM) to the nodes in a system.
Scale-out is horizontal scaling, which refers to adding more
nodes with few processors and RAM to a system.

Considering the different combinations of scale-up and
scale-out Hadoop with a remote file system (OFS) and a
local file system (HDFS), we can create four platforms as
shown in Table I: scale-up cluster with OFS (denoted as up-
OFS), scale-up cluster with HDFS (denoted as up-HDFS),
scale-out cluster with OFS (denoted as out-OFS), and scale-
out cluster with HDFS (denoted as out-HDFS). Then, an
interesting question is raised: for a given application, which
is the best running platform.

Hadoop
MapReduce

HDFS

Hadoop
MapReduce

HDFS

Hadoop
MapReduce

HDFS

Hadoop
MapReduce

HDFS

…

File System Test Configuration

Figure 1. Typical Hadoop with HDFS local storage (HDFS in short).

Hadoop
MapReduce

OrangeFS

Hadoop
MapReduce

Hadoop
MapReduce

Hadoop
MapReduce

Remote Client Test Configuration

…

Figure 2. Hadoop with the OrangeFS remote storage (OFS in short).

To answer this question, it is important to understand the
performance of different types of applications (e.g., data-
intensive, CPU-intensive, and I/O-intensive) with different
characteristics (e.g., input data size, the number of file
reads/writes, and the amount of computations) on these four
platforms, since a big data workload generally consists of
different types of jobs, with input data size ranging from
KB to PB. [10, 17]. However, there have been no previous
works that conduct such a thorough analysis. CPU-intensive
applications include a large amount of computations and
devote most of the time on computing. Data-intensive and

Table I
DIFFERENT PLATFORMS.

Scale-up Scale-out
OFS up-OFS out-OFS

HDFS up-HDFS out-HDFS

I/O-intensive applications have large input data size and
require large amount of data read/write operations. Data-
intensive applications contain certain amount of computa-
tions such as counting, while I/O-intensive applications do
not or have only few computations. Different characteristics
of applications may lead to different performance and gain
different benefits in the scale-up and scale-out systems. For
example, data-intensive applications have large input and
shuffle data size and may benefit more from a large size
of memory and hence from the scale-up machines.

In this paper, we aim to provide a basic idea that different
platforms do provide different performance for different
types of applications. In addition, we provide the metrics on
how to decide the platforms for different applications. The
contributions of this paper are summarized as follows:
(1) We have conducted comprehensive experiments for dif-
ferent types of applications (including data-intensive, CPU-
intensive, and I/O-intensive applications) on the four plat-
forms with different input data sizes and provide an insight-
ful analysis on their performance.
(2) We also have analyzed how different application char-
acteristics affect the application performance and system
overheads on the four platforms and determine the best
platform for an application with certain characteristics.
(3) Although the performance measurements in this paper
are conducted on only one HPC cluster, the users on other
HPC clusters also encounter similar situations on selecting
different platforms. They can follow the same metrics used
in this paper to first characterize the best platforms for
different applications. Therefore, our measurement results
provide a guidance on how to select the best platform to run
different types of applications with different characteristics.

The remainder of this paper is organized as follows.
Section II describes the configurations of the four platforms.
Section III presents the measurement results of different
types of applications and provides an in-depth analysis of the
results. Section IV summarizes the observations and further
discusses the guidance to cloud environment. Section V
gives an overview of the related work. Section VI concludes
this paper with remarks on our future work.

II. CONFIGURATIONS ON HPC-BASED HADOOP

In this section, we introduce the details on how to con-
figure Hadoop MapReduce on a HPC cluster. We do our
experiments on HPC cluster because HPC clusters generally
have machines with different CPU and memory, which
allows us to deploy scale-up and scale-out machines easily
without any further cost. In our experimental measurement,
we use Clemson Palmetto HPC cluster [3].

A. Introduction of Hadoop MapReduce

MapReduce [11] is a scalable and parallel processing
framework to handle large datasets. HDFS is a highly fault
tolerant and self-healing distributed file system to cooperate
with Hadoop MapReduce. HDFS stores the input data of
each job into several blocks. The number of blocks is
calculated by Input data size

block size . In a MapReduce job, there are
generally three phases: map, shuffle and reduce. In the map
phase, the job tracker assigns each mapper to process one
data block. Note that the data block may locate at the same
nodes with the mapper, which is called data locality. Hadoop
MapReduce prefers high data locality to reduce network
consumption for data movement to improve performance.
All the mappers generate the output, called intermediate
data (i.e., shuffle data). In the shuffle phase, each mapper’s
output is then partitioned and sorted. Different partitions are
shuffled to corresponding reducers. Once the reducers are
scheduled on specific nodes by the job tracker, the shuffle
data is copied to the reduce nodes’ memory first. If the
shuffle data size is larger than the size of in-memory buffer ,
the shuffle data will be spilled to local disks, which results in
extra overheads. In the reduce phase, the reducers aggregate
the shuffle data and produce the final output of the jobs.

B. Experiment Environment

In the experiments, we use Hadoop MapReduce version
1.2.1. We use four machines for scale-up Hadoop, each of
which is equipped with four 6-core 2.66GHZ Intel Xeon
7542 processors, 505GB RAM, and 91GB hard disk. Scale-
out cluster consists of twenty-four machines, each of which
has two 4-core 2.3GHZ AMD Opteron 2356 processors,
16GB RAM, and 193GB hard disk. To achieve fair per-
formance comparison, we require the scale-up and scale-
out machines have similar cost. We investigated the cost
information from [4] and found that one scale-up machine
matches similar price with 6 scale-out machines.

C. Configurations on HDFS and OFS

As we mentioned in Section I, while traditional Hadoop
is deployed with the distributed local file system HDFS,
conventional HPC architecture relies on the remote file
system. On HPC cluster, compute and data are separated
and connected with high speed interconnects, such as Eth-
ernet and Myrinet. However, we can still deploy Hadoop
MapReduce framework with HDFS on HPC cluster. Under
the help of myHadoop [12], we easily configure Hadoop
with HDFS on Palmetto. To achieve fair comparison, for
both OFS and HDFS file systems, we use the 10GB Myrinet
as the interconnections.

Recently, in order to achieve better performance, a Java
Native Interface (JNI) shim layer has been successfully
implemented on the HPC cluster in our university, which
allows Hadoop to work directly with remote file system
OFS. Both the input and output data can be stored in the

remote file system, while the shuffle data is still required to
store in local file system of each node. OFS is a parallel file
system (PVFS) that distributes data across multiple servers.
Moreover, OFS is demonstrated to be able to offer much
better I/O performance [1] than HDFS on processing large
amount of data.

In HDFS, we set the HDFS block size to 128MB, which
is the same as the current production clusters [18]. OFS
stores data in simple stripes (i.e., similar as blocks in HDFS)
across multiple storage servers in order to facilitate parallel
access. To compare OFS fairly with HDFS, we set the stripe
size to 128MB. Typically, in current commercial MapReduce
cluster [8], the total number of map and reduce slots is set
to the number of cores.Therefore, in our experiments, each
scale-up machine has 24 map and reduce slots, while each
scale-out machine has 8 map and reduce slots in total. For
HDFS, the replication factor is set to 3 by default. For OFS,
it currently does not support build-in replications. However,
it does not affect our measurement results since data loss
never occurs in OFS during our experiments.

D. Configurations on Scale-up Machines

The scale-out architecture deploys many scale-out ma-
chines with poor CPU and small RAM size. On the other
hand, the scale-up architecture has a few machines with high
performance CPU and large RAM size. In order to exert the
CPU and RAM size advantages of scale-up machines, sever-
al parameters of the scale-up Hadoop clusters are configured
differently from the conventional Hadoop clusters.
Heap size In Hadoop, each map and reduce task runs in a
JVM. The heap size is the memory allocated to each JVM
for buffering data. If the memory is full, the data in memory
is spilled to the local disk, which introduces overheads.
Therefore, it is less likely for the data to be spilled to local
disk if the heap size is larger, leading to fewer overheads
and better performance. The heap size is 200MB for each
JVM by default in Hadoop.

In the experiments, the machines for scale-up and scale-
out machines allow us to set the heap size to a much larger
value than 200MB. We tune the heap size through trial and
error on both scale-up and scale-out machines. To achieve
the best performance and also avoid the out of memory
error [8], we set the heap size to 8GB per task on scale-up
machines, and to 1.5GB on scale-out machines, respectively,
through trial and error.
RAM drive to place shuffle data After setting the heap
size to 8GB, we find that there is still much memory left
(more than 300GB) on scale-up machines. In Hadoop, the
shuffle data of the jobs is required to store on local file
system. On Palmetto, it enables us to use half of the total
memory size as tmpfs, which serves the same functions as
RAMdisk. Therefore, we use half of the RAM (253GB) as
RAMdisk to place the shuffle data on scale-up machines. If
the shuffle data size is larger than the available RAMdisk

size, the rest of the shuffle data is stored on the local disks.
On the other hand, since the memory size is not large on the
scale-out machines (i.e., 16GB), the shuffle data is placed
on the local disks only.

III. PERFORMANCE MEASUREMENTS

In this section, we will compare the performance of
data-intensive, CPU-intensive, and I/O-intensive jobs with
different input data size on the four platforms as mentioned
previously. We expect to provide a guidance for users on
how different applications benefit from different platforms.

A. Measured Applications and Metrics

We classify the representative Hadoop benchmarks into
three types: data-intensive, I/O-intensive and CPU-intensive
in our performance measurement. We can roughly infer the
types of applications by the size of the input data, shuffle
data and output data. In general, data-intensive applica-
tions have large input and shuffle data sizes and devote
much processing time to I/O requests, while I/O-intensive
applications generally conduct only read/write operations
on the file system. CPU-intensive applications include a
large amount of computations such as iterative computations.
The representative Hadoop applications we measure in this
section include Wordcount, Grep, write and read test of
TestDFSIO, PiEstimator, and matrix multiplication [2].

Among them, Wordcount and Grep are typical data-
intensive applications since they need to read/write and
process a large amount of data. Wordcount and Grep have
relatively large input and shuffle sizes but small output size.
We generated the input data for Wordcount and Grep from
a big data benchmark BigDataBench [17].

The write and read test of TestDFSIO are typical I/O-
intensive applications. They complete a large amount of
read/write operations during the map tasks and only do some
calculations like calculating the I/O rate in the reduce tasks.
In TestDFSIO, each mapper reads/writes one file. It allows
us to set the number of mappers (i.e., the number of files)
and the read/write size of file, regardless of the block size.

The CPU-intensive applications we use in the experiments
is PiEstimator and matrix multiplication. PiEstimator is
an application to estimate the value of Pi. The mappers
generate a specified number of sample points and then
counts the number of those points that are inside a unit circle.
The reducers accumulate points counted by the mappers
and then estimates the value of Pi. Matrix multiplication
(MM) calculates the multiplication of two matrices. The two
matrices are decomposed to a large number of small blocks
and hence each mapper processes one block multiplication,
while the reducers aggregate all the output block results
generated in the mappers. The majority computations of the
jobs are also completed during the map phase.

We measure these metrics for different applications:

0.8

1

1.2

1.4

1.6

1.8

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

N
o
rm

a
li
ze
d
 e
x
e
c
u
ti
o
n

ti
m
e

Input data size (GB)

out‐OFS up‐OFS

out‐HDFS up‐HDFS

(a) Execution time.

0.8

1

1.2

1.4

0
.5 1 2 4 8
1
6
3
2
6
4

1
2
8

2
5
6

4
4
8

N
o
rm

ai
liz
e
d
 m

ap

p
h
as
e
 d
u
ra
ti
o
n

Input data size (GB)

out‐OFS up‐OFS

out‐HDFS up‐HDFS

(b) Map phase duration.

0

20

40

60

80

100

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

S
h
u
ff
le
 p
h
a
s
e

d
u
ra
ti
o
n
 (
s)

Input data size (GB)

out‐OFS up‐OFS

out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0

5

10

15

20

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

R
e
d
u
c
e
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

Input data size (GB)

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 3. Measurement results of data-intensive jobs of Wordcount.

0.6

0.8

1

1.2

1.4

1.6

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8N
o
rm

a
li
ze
d
 e
x
e
c
u
ti
o
n

ti
m
e

Input data size (GB)

out‐OFS up‐OFS

out‐HDFS up‐HDFS

(a) Execution time.

0.6

1

1.4

1.8

0
.5 1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

N
o
rm

al
iz
ed

 m
ap

p
h
as
e
d
u
ra
ti
o
n

Input data size (GB)

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(b) Map phase duration.

0

10

20

30

40

50

60

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

S
h
u
ff
le
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

Input data size (GB)

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0

4

8

12

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4
4
8

R
e
d
u
c
e
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

Input data size (GB)

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 4. Measurement results of data-intensive jobs of Grep.

• Execution time, which is the job running time and calcu-
lated by the job ending time minus job starting time.
•Map phase duration, which is calculated by the last map-
per’s ending time minus the first mapper’s starting time.
• Shuffle phase duration, which is defined as last shuffle
task’s ending time minus the last mapper’s ending time.
• Reduce phase duration, which is from the ending time of
the last shuffle task to the end of the job.

In the experiments, we normalize the execution time and
map phase duration by the results of up-OFS. For example,
if a job running on up-OFS and up-HDFS has an execution
time of 10 and 15 seconds, respectively, then up-OFS on the
figure is shown as 1, while up-HDFS on the figure is shown
as 1.5. Due to the limit of local disk size, we cannot process
data more than 80GB on up-HDFS platform. Therefore, in
the following measurement results, we do not show the up-
HDFS for input data size more than 80GB.

A main advantage of the scale-out machines comparing
to the scale-up machines is the more task slots and hence
fewer task waves for a job. The number of map (reduce)
waves of a job is calculated by the number of distinct start
times from all mappers (reducers) of the job. If the number
of mappers (reducers) of a job is larger than the number of
map (reduce) slots in a node, partial mappers (reducers) are
scheduled to all the slots first, forming the first wave. After
the tasks complete and some slots are available, the second,
third and subsequent waves are scheduled in sequence.

B. Data-Intensive Applications

In this section, we show the performance evaluation of
data-intensive applications including Wordcount and Grep.
Figures 3(a) and 4(a) show the normalized execution time
of Wordcount and Grep versus different input data size,
respectively. Note that in all these applications, the number
of mappers is determined by the input data size, which is

calculated by d Input data size
Block size e. Since the block size is fixed

in the experiments, the number of mappers is proportional
to the input data size. From the figures, we observe several
meaningful observations.

We observe that when the input data size is small (0.5-
8GB), the performance of Wordcount and Grep is better on
the scale-up machines than the scale-out machines. On the
contrary, when the input data size is large (≥16GB), the
performance of Wordcount and Grep is better on the scale-
out machines than on the scale-up machines. This result is
caused by the following reasons.

First, when the input data size is small, the number
of mappers that needs to process is also small. As we
mentioned, the number of task waves is related to the total
number of mappers and the slots available on the nodes.
Though the scale-out machines have more CPU cores, small
jobs (i.e., jobs that process small input data size) on the
scale-up machines can also be completed in only one wave
or a few task waves. As a result, the small jobs benefit from
the more powerful CPU resources of the scale-up machines
and hence better performance. Second, recall that the shuffle
data is copied to the reduce nodes’ memory, which is deter-
mined by the JVM heap size. Since the scale-up machines
have larger heap sizes, it is less likely for the shuffle data to
be spilled to local disks, leading to better performance than
the scale-out machines. Third, the utilization of RAMdisk
on the scale-up machines provides a much faster shuffle
data placement than the scale-out machines. In summary,
the more powerful CPU, larger heap size, and utilization
of RAMdisks guarantee the better performance on scale-up
machines than on scale-out machines, when the input data
size is small.

When the input data size is large, there are more map-
pers/reducers in the jobs. In this situation, the scale-out

machines benefit from more task slots than the scale-up
machines. Therefore, the scale-out machines complete jobs
in fewer task waves than the scale-up machines do. Note that
the more task waves will lead to a significant longer phase
duration. Therefore, even though the scale-up machines are
configured with larger heap size and utilization of RAMdisk,
the scale-out cluster still outperforms the scale-up cluster.

Comparing HDFS and OFS, when the input data size is
large, OFS outperforms the HDFS. However, when the input
data size is small, surprisingly, the performance of HDFS is
20% (calculated by |OFS−HDFS|

HDFS) better than OFS, although
OFS can provide better I/O performance than HDFS [1] as
we mentioned. This is because of the following reasons.
(1) The remote file system is required to be accessed through
network. Although Myrinet provides a very fast local area
interconnect, there is still network latency in OFS, while
HDFS benefits from data locality and hence avoids network
latency. When the input data size is small, the execution
time is relatively small. Therefore, the network latency is
not negligible comparing to the small execution time and the
performance of small size jobs is degraded by this network
latency in OFS.
(2) On the other hand, when the input data size is large, the
execution time becomes large and hence the network latency
is negligible. In this situation, since OFS has better I/O
performance than HDFS as aforementioned, the execution
time is shorter on OFS than on HDFS.

Therefore, we observe that when the input data size is
small, the performance follows up-HDFS > up-OFS >
out-HDFS > out-OFS (> means better). When the input
data size is large, the performance of Wordcount and Grep
follows out-OFS > out-HDFS > up-OFS > up-HDFS.

Since the execution time of a job consists of the durations
in the map, shuffle and reduce phases, we then study these
broken-down durations. Figures 3(b) and 4(b) show the
normalized map phase duration of Wordcount and Grep,
respectively. We observe a similar relationship of the map
phase duration with the job execution time due to the same
reasons. When the input data size is small (0.5-8GB), the
map phase duration is shorter on scale-up than on scale-
out; when the input data size is large (>16GB), the map
phase duration is shorter on scale-out than on scale-up. As
to the comparison between OFS and HDFS, it is also similar
with the relationship of the job execution time due to the
same reasons. We see that when the input data size range is
0.5-8GB, the map phase duration of these jobs are 10-50%
shorter on HDFS than on OFS. When the input data size is
larger than 16GB, the map phase duration is 10-40% shorter
on OFS than on HDFS, no matter if they are configured
with the scale-up or scale-out cluster. Figures 3(c) and 4(c)
show the shuffle phase duration of Wordcount and Grep,
respectively. We see that the shuffle phase duration is always
shorter on scale-up machines than on scale-out machines.
This is because of the larger heap size and RAMdisk of

scale-up machines as aforementioned.
Figures 3(d) and 4(d) show the reduce phase duration of

Wordcount and Grep, respectively. In Wordcount and Grep,
the reduce phase aggregates the map outputs which have
small size and hence the reduce phase duration is very
short. Therefore, the reduce phase duration of Wordcount
and Grep is around a few seconds and there is not any
specific relationship of the reduce phase duration. We see
neither OFS nor HDFS affects the reduce phase duration
of Wordcount and Grep. This is because the reduce phase
duration of these two applications only lasts for a short time,
which is hardly affected by the file system.

C. I/O-Intensive Applications

In this section, we measure the performance of a relatively
large data size (80GB). Figures 5(a) and 6(a) show the
normalized execution time of TestDFSIO reading/writing
80GB data versus different number of files, respectively. In
these reading/writing tests, the size of each file is equal to

80GB
the number o f f iles . More reading/writing files means more I/O
operations and vice versa. We see that when the number of
files is large, the performance of I/O-intensive applications
(both read and write) is better on scale-out machines than on
scale-up machines, no matter if they use HDFS or OFS. For
HDFS, the I/O rate of local disks is similar on both scale-
up and scale-out machines. However, scale-out machines
read/write data from/to twelve datanodes simultaneously,
while scale-up machines read/write data from/to only two
datanodes. Therefore, scale-up machines read/write to fewer
disks in parallel, which limits their performance. As to OFS,
it allows CPU to build up multiple communications with
remote storage servers simultaneously and hence read/write
files in parallel. As a result, the scale-out machines that have
more CPU cores can read/write more files from/to OFS at the
same time. On the other hand, since the scale-up machines
have fewer CPU cores, they build up fewer communications
with OFS and hence read/write fewer files from/to OFS.
Therefore, for both HDFS and OFS, the scale-out cluster
outperforms the scale-up cluster.

When the number of files is small, the performance is
similar on scale-up machines and scale-out machines. This
is because when there are only a small number of files, both
scale-up and scale-out machines read/write files from/to only
a small number of disk devices simultaneously, which cannot
take advantage of the larger number of disk devices in the
scale-out machines. In this case, the factor that affects the
performance is mainly the disk rate. Since the disk rate is
similar on the scale-up and scale-out machines, no matter
if they use HDFS or OFS, the execution times on scale-up
and scale-out machines are similar to each other.

Figures 5(b), 5(c) and 5(d) and Figures 6(b), 6(c) and
6(d) show the map, shuffle and reduce phase durations of the
write test and the read test of 80GB data, respectively. we see
that in both the write and read tests, the map phase duration

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 256

N
o
rm

a
li
ze
d

e
x
e
c
u
ti
o
n
 t
im

e
 (
s)

The number of write files

out‐OFS out‐HDFS
up‐OFS up‐HDFS

(a) Execution time.

0
1
2
3
4
5
6

1 2 4 8 16 32 64 128 256

N
o
rm

a
li
ze
d
 m

a
p

p
h
a
se
 d
u
ra
ti
o
n

The number of write files

out‐OFS
up‐OFS
out‐HDFS
up‐HDFS

(b) Map phase duration.

0

4

8

12

16

1 2 4 8 16 32 64 128 256

S
h
u
ff
le
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of write files

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0

2

4

6

8

10

1 2 4 8 16 32 64 128 256

R
e
d
u
ce
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of write files

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 5. Measurement results of I/O-intensive write test (80GB) of TestDFSIO.

0
1
2
3
4
5
6
7

1 2 4 8 16 32 64 128 256

N
o
rm

a
li
ze
d

e
x
e
c
u
ti
o
n
 t
im

e
 (
s)

The number of read files

out‐OFS out‐HDFS

up‐OFS up‐HDFS

(a) Execution time.

0
1
2
3
4
5
6

1 2 4 8 16 32 64 128 256

N
o
rm

a
li
ze
d
 m

a
p

p
h
a
se
 d
u
ra
ti
o
n

The number of read files

out‐OFS
up‐OFS
out‐HDFS
up‐HDFS

(b) Map phase duration.

0

4

8

12

16

20

1 2 4 8 16 32 64 128 256

S
h
u
ff
le
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of read files

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0
2
4
6
8

10
12
14

1 2 4 8 16 32 64 128 256

R
e
d
u
ce
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of read files

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 6. Measurement results of I/O-intensive read test (80GB) of TestDFSIO.

exhibits a similar performance trends as the execution time.
The shuffle and reduce phase durations of both tests are quite
small (<8s), and hence they exhibit no specific relationship.
Comparing OFS and HDFS in the scale-up and scale-out
clusters, the map phase duration is shorter on OFS than
on HDFS for reading/writing 80GB. Since the shuffle and
reduce phase durations are very small, they are not affected
by using either OFS or HDFS.

D. CPU-Intensive Applications
Figure 7(a) shows the execution time of PiEstimator

versus the number of sample points. PiEstimator has 80
mappers in this experiment. Note that as the number of
sample points increases, there are more calculations in the
experiments because the application needs to calculate the
location of each point to determine whether it is in the unit
circle or not, which results in an increase of the execution
time of each mapper. Moreover, as the number of sample
points increases, each mapper needs to process an input file
size ranging from (2-20000)KB.

When the number of sample points is small (105-107)
(i.e., each mapper conducts fewer computations and can
be completed in a shorter time), we see that the scale-
up machines outperform the scale-out machines. However,
when the number of sample points is large (> 107) (i.e.,
each mapper conducts more computations and requires more
time to complete), we see that the scale-out machines
perform better than the scale-up machines. Although the
scale-out machines benefit from more CPU cores to handle
the mappers, the scale-up machines still outperform the
scale-out machines when the number of sample points is
small. This is because of the L1 cache size difference of
CPUs on the scale-up and scale-out machines. When the
number of sample points is small, the input data size (2-
200KB) is as small as the CPU L1 cache size and hence

the CPUs can process all the data within the fastest cache.
When all the data is placed in L1 cache, the CPUs on
scale-up machines can be fully utilized. Therefore, the full
utilization of CPUs on scale-up machines compensates the
disadvantage of fewer CPU cores. When the amount of
computations is large, the input data size is much larger than
the L1 cache size, which means that CPU cannot maintain
the fastest speed, resulting in lower performance. Then,
the disadvantage of fewer map slots on scale-up machines
cannot be compensated. As a result, the execution time
on scale-up machines is higher than on scale-out machines
when the amount of computations is large.

Comparing the performance of OFS and HDFS, we see
that OFS always performs worse than HDFS. This is because
each mapper handles a small file size in PiEstimator. As
we mentioned previously, when the input data size is small,
the network latency is non-negligible in OFS. In contrast,
HDFS benefits from high data locality. Therefore, HDFS
outperforms OFS for small input data sizes.

Figures 7(b), 7(c) and 7(d) show the map, shuffle and
reduce phase durations of PiEstimator, respectively. Since
the map phase of PiEstimator completes the majority work
in the jobs (that determine whether the sample points are in
the unit circle or not), while the shuffle phase only collects
the statistics and the reduce phase simply derives Pi from the
map results, we see that the map phase duration exhibits a
similar performance trend as the execution time. The shuffle
and reduce phase durations of PiEstimator are quite small
(<5s), and they exhibit no specific relationships on either
scale-up or scale-out machines. Comparing OFS and HDFS,
OFS leads to 50−80% longer map phase duration. This is
caused by the non-negligible network latency for processing
a small data size. As to the shuffle and reduce phases, since
their durations are very small, whether using OFS or HDFS

0

50

100

150

200

250

1
E
+
0
5

1
E
+
0
6

2
E
+
0
6

5
E
+
0
6

8
E
+
0
6

1
E
+
0
7

5
E
+
0
7

1
E
+
0
8

2
E
+
0
8

5
E
+
0
8

8
E
+
0
8

1
E
+
0
9E
x
e
c
u
ti
o
n
 t
im

e
 (
s
)

The number of samples

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(a) Execution time.

0

0.5

1

1.5

2

1
E
+
0
5

1
E
+
0
6

2
E
+
0
6

5
E
+
0
6

8
E
+
0
6

1
E
+
0
7

5
E
+
0
7

1
E
+
0
8

2
E
+
0
8

5
E
+
0
8

8
E
+
0
8

1
E
+
0
9N
o
rm

a
li
ze
d
 m

a
p

p
h
a
se
 d
u
ra
ti
o
n

The number of smaples

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(b) Map phase duration.

0
2
4
6
8
10

1
E
+
0
5

1
E
+
0
6

2
E
+
0
6

5
E
+
0
6

8
E
+
0
6

1
E
+
0
7

5
E
+
0
7

1
E
+
0
8

2
E
+
0
8

5
E
+
0
8

8
E
+
0
8

1
E
+
0
9S
h
u
ff
le
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of smaples

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0
2
4
6
8

10

1
E
+
0
5

1
E
+
0
6

2
E
+
0
6

5
E
+
0
6

8
E
+
0
6

1
E
+
0
7

5
E
+
0
7

1
E
+
0
8

2
E
+
0
8

5
E
+
0
8

8
E
+
0
8

1
E
+
0
9

R
e
d
u
ce
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of smaples

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 7. Measurement results of CPU-intensive jobs of PiEstimator.

0.6

1

1.4

1.8

2.2

1 2 4 8 16 32 64 128 256N
o
rm

a
li
ze
d
 e
x
e
c
u
ti
o
n

ti
m
e

The number of mappers

out‐OFS
up‐OFS
out‐HDFS
up‐HDFS

(a) Execution time.

0

0.6

1.2

1.8

2.4

1 2 4 8 16 32 64 128 256

N
o
rm

al
iz
e
d
 m

ap

p
h
as
e
 d
u
ra
ti
o
n

The number of mappers

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(b) Map phase duration.

1

10

100

1000

1 2 4 8 16 32 64 128 256

S
h
u
ff
le
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of mappers

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(c) Shuffle phase duration.

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256

R
e
d
u
c
e
 p
h
a
se

d
u
ra
ti
o
n
 (
s)

The number of mappers

out‐OFS up‐OFS
out‐HDFS up‐HDFS

(d) Reduce phase duration.

Figure 8. Measurement results of CPU-intensive jobs of MM.

does not affect the durations of these two phases much.
Figure 8(a) shows the normalized execution time of MM

versus different number of mappers. Note that more mappers
mean that the matrix’s size is larger. When the number
of mappers is small (1-16), we see that scale-up machines
perform better because of their better CPUs as indicated pre-
viously. When the number of mappers is large (>16), scale-
out machines perform better since there are fewer map slots
on scale-up machines and hence more task waves. In spite
of the better CPU on scale-up machines, the performance is
degraded because of the more task waves of MM.

Figures 8(b), 8(c), and 8(d) show the map, shuffle, and re-
duce phase durations of MM versus the number of mappers.
We see that the map phase duration has similar results as the
execution time because the majority of the work of MM is
completed in the map phase. The shuffle phase duration is
shorter on scale-up machines than on scale-out machines
because the scale-up machines handle shuffle data more
quickly as explained previously for the data-intensive jobs.
The reduce phase of MM aggregates the results generated
in map phase. As the size of matrix (hence the number of
mappers) increases, the output data size of MM becomes
larger. We see that when the number of mappers is large,
the reduce phase duration on scale-out machines becomes
smaller because the scale-out machines can write the output
data to more disk devices simultaneously, as explained
previously for the I/O-intensive jobs. When the number of
mappers is small, we see that the reduce phase duration is
similar on the scale-up and scale-out clusters. This is because
the output data size is small and hence it can be written in a
few blocks, which cannot take advantage of the large number
of disk devices of the scale-out machines.

Comparing OFS and HDFS, when the number of mappers
is small, it is better to use HDFS. On the contrast, as the
number of mappers increases, it becomes better to use OFS

rather than HDFS. The reason is that OFS can provide more
powerful I/O performance than HDFS, as explained for the
data-intensive applications previously. However, when the
input data size is small, the network latency is non-negligible
and degrades the performance of OFS.

IV. DISCUSSIONS

A. Summary of Results

We can make the following conclusions for data-intensive,
CPU-intensive and I/O-intensive applications.
Data-intensive applications:
(1) When the input data size is small, the performance
relationship is up-HDFS>up-OFS>out-HDFS>out-OFS.
(2) When the input data size is large, the performance of ap-
plications with a small output data size (e.g., Wordcount and
Grep) follows out-OFS>out-HDFS>up-OFS>up-HDFS.
I/O-intensive applications:
(1) When the number of reading/writing files is small, the
performance relationship is up-OFS>out-OFS>up-HDFS >
out-HDFS.
(2) When the number of reading/writing files is large and
the total file size is large (e.g., 80GB), the performance
relationship is out-OFS>up-OFS>out-HDFS>up-HDFS.
CPU-intensive applications:
(1) When both the amount of computations and the input file
size are small, the performance relationship is up-HDFS >
out-HDFS > up-OFS>out-OFS.
(2) When both the amount of computations and the input
file size are large (e.g., MM), the performance relationship
is out-OFS>out-HDFS>up-OFS>up-HDFS. On the other
hand, when the amount of computations is large but the
input file size is small (e.g., PiEstimator), the performance
relationship is out-HDFS>up-HDFS>out-OFS>up-OFS.

Therefore, for a specific type of applications, users can
determine which platform should be use to execute the appli-

cations to achieve the best performance. For example, when
a data-intensive job with input data size 100GB is submitted,
based on our conclusions, the job should run on the out-OFS
platform. We expect that our measurement results can help
users to select the most appropriate platforms for different
applications with different characteristics on HPC clusters.

V. RELATED WORK

MapReduce [11] is a popular framework that performs
parallel computations on big data. Many HPC sites [1]
have extended their clusters to support Hadoop MapReduce.
File systems are an essential component in the MapReduce
and HPC clusters. Tantisiriroj et al. [16] integrated PVFS
into Hadoop and compared its performance with HDFS.
Other works [5, 7] successfully implement HPC file systems
(GPFS and Lustre) in Hadoop. Our work is different from
the above work in that we combine HDFS and OFS with
scale-up and scale-out machines and measure the application
performance on different platforms in order to provide
guidance on selecting the most appropriate platform to run
a job based on its characteristics.

In order to improve the performance of MapReduce
clusters, characterizing the workload features is important
since cluster provisioning, configuring and managing is
essential for a cluster. Studying the workloads can provide
general insights about how the performance of clusters.
Chen et al. [9] characterized new MapReduce workloads,
which are driven in part by interactive analysis and with
heavy use of query-like programming frameworks such as
Hive on top of MapReduce. Ren et al. [14] conducted a
case study of the jobs and tasks of the workload from a
commodity Hadoop cluster Taobao. Appuswamy et al. [8]
measured the performance of a set of representative Hadoop
applications on scale-up and scale-out machines. All of these
works provide guidance on how to characterize different
applications. Our work is different from the above works
since we configure scale-up and scale-out machines for
Hadoop with HDFS and a remote file system and measure
the performance difference among all these platforms. From
the results, we can select the best platform for different jobs
with different characteristics.

VI. CONCLUSION

In this paper, we have conducted performance mea-
surement study of data-intensive, I/O-intensive and CPU-
intensive applications on four HPC-based Hadoop platforms:
scale-up cluster with OFS, scale-up cluster with HDFS,
scale-out cluster with OFS and scale-out cluster with HDFS.
We expect that our measurement results can help users to
select the most appropriate platforms for different applica-
tions with different characteristics. Additionally, our results
can also provide guidance on instance selection and file
system selection for the users who would like to configure
Hadoop in the cloud environments that provide similar file

system architectures as HPC cluster. In the future, using the
conclusions in this paper, we plan to develop an adaptive
hybrid platform that contains both scale-up and scale-out
machines, and HDFS and OFS.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research Faculty Fellowship
8300751.

REFERENCES

[1] Accelerate Hadoop MapReduce Performance using Dedicated
OrangeFS Servers. http://www.datanami.com/2013/09/
09/accelerate hadoop mapreduce performance using
dedicated orangefs servers.html.

[2] Apache Hadoop. http://hadoop.apache.org/.
[3] Clemson Palmetto HPC cluster.

http://citi.clemson.edu/palmetto/.
[4] Newegg. http://www.newegg.com/.
[5] Using Lustre with Apache Hadoop.

http://wiki.lustre.org/images/1/1b/Hadoop wp v0.4.2.pdf.
[6] S. Agrawal. The Next Generation of Apache Hadoop MapRe-

duce. Apache Hadoop Summit India, 2011.
[7] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha,

P. Sarkar, M. Shah, and R. Tewari. Cloud analytics: Do
we really need to reinvent the storage stack? In Proc. of
HOTCLOUD, 2009.

[8] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron. Scale-up vs scale-out for hadoop: Time to
rethink? In Proc. of SOCC, 2013.

[9] Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical
Processing in Big Data Systems: A CrossIndustry Study of
MapReduce Workloads. In Proc. of VLDB, 2012.

[10] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for
Evaluating MapReduce Performance Using Workload Suites.
In Proc. of MASCOTS, 2011.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. of OSDI, 2004.

[12] S. Krishnan, M. Tatineni, and C. Baru. myHadoop-Hadoop-
on-Demand on Traditional HPC Resources. Technical report,
2011.

[13] Z. Li and H. Shen. Designing a hybrid scale-up/out hadoop
architecture based on performance measurements for high
application performance. In Proc. of ICPP, 2015.

[14] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. Workload
characterization on a production Hadoop cluster: A case study
on Taobao. In Proc. of IISWC, 2012.

[15] I. Stonica. A Berkeley view of big data: Algorithms, Ma-
chines and People. UC Berkeley EECS Annual Research
Symposium, 2011.

[16] W. Tantisiriroj, S. Patil, G. Gibson, S. W. Son, S. J. Lang,
and R. B. Ross. On the Duality of Data-intensive File System
Design: Reconciling HDFS and PVFS. In Proc. of SC, 2011.

[17] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, et al.
Bigdatabench: A big data benchmark suite from internet
services. In Proc. of HPCA, 2014.

[18] M. Zaharia, D. Borthakur, S. Sen, K. Elmeleegy, S. Shenker,
and I. Stoica. Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In Proc.
of EuroSys, 2010.

