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ABSTRACT

To promote cost-effective task assignment in Spatial Crowdsourcing

(SC), workers are required to report their location to servers, which

raises serious privacy concerns. As a solution, geo-obfuscation has

been widely used to protect the location privacy of SC workers,

where workers are allowed to report perturbed location instead

of the true location. Yet, most existing geo-obfuscation methods

consider workers’ mobility on a 2 dimensional (2D) plane, wherein

workers can move in arbitrary directions. Unfortunately, 2D-based

geo-obfuscation is likely to generate high traveling cost for task as-

signment over roads, as it cannot accurately estimate the traveling

costs distortion caused by location obfuscation. In this paper, we

tackle the SC worker location privacy problem over road networks.

Considering the network-constrained mobility features of workers,

we describe workers’ mobility by a weighted directed graph, which

considers the dynamic traffic condition and road network topology.

Based on the graph model, we design a geo-obfuscation (GO) func-

tion for workers to maximize the workers’ overall location privacy

without compromising the task assignment efficiency. We formu-

late the problem of deriving the optimal GO function as a linear

programming (LP) problem. By using the angular block structure of

the LP’s constraint matrix, we apply Dantzig-Wolfe decomposition

to improve the time-efficiency of the GO function generation. Our

experimental results in the real-trace driven simulation and the real-

world experiment demonstrate the effectiveness of our approach in

terms of both privacy and task assignment efficiency.
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1 INTRODUCTION

With ubiquitous wireless connectivity and continued advances in

positioning technologies in mobile devices (e.g., smartphones), spa-

tial crowdsourcing (SC) is emerging as a novel paradigm to engage a

large number of mobile users (workers) to participate in a variety of

location-based services (LBS) [1, 2], from real-time navigation (e.g.,

Waze [3]) to journalism and crisis response (MediaQ [4]) to com-

mercial transportation systems (e.g., Uber-like platforms [5]). In

SC, workers are expected to physically move to the tasks’ location

to perform an assigned task (e.g. provide a ride to a customer, take

photos, make measurements). As such, to promote cost-effective

crowdsourcing work, tasks need to be assigned to workers with

low traveling cost (e.g., traveling distance/time), which requires

workers to disclose their location information to SC servers in real-

time. This practice raises privacy issues that are not only related

to whereabouts of workers but also related to some other sensi-

tive information such as religions, home/working address, sexual

preference, etc [6].

Location privacy protection in SC has been a very active research

area in the past few years [7–17]. Considering mobile devices’

limited computation capability, instead of using cryptographic

techniques [9], a large body of work has been centered on geo-

obfuscation [10–12, 14], a location privacy protection paradigm that

allows workers to report perturbed location instead of true location

to servers. Yet, most existing geo-obfuscation designs still consider

workers’ mobility on a 2 dimensional (2D) plane [18], under which

workers are assumed to be able to move in arbitrary directions at

random speed without any restriction. Nevertheless, when work-

ers’ mobility is constrained by road networks, 2D-based geo-

obfuscation is more likely to generate high cost for task as-

signment (low quality of service (QoS)), i.e., tasks are possibly
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Figure 1: Traveling dis-

tances estimated from obfus-

cated locations𝐴 and 𝐵 over

roads, where the distances

are calculated by the Dijk-

stra’s algorithm, which can

find the shortest path in a

graph [19] (𝑃 : Actual loca-
tion.𝑄 : Task location).

The Euclidean distances be-

tween (A, Q), (B, Q), and (P,

Q) on 2D are 480m, 490m,

and 540m, respectively.

assigned to workers whose re-

ported locations are physically near

to the tasks, but the actual trav-

eling cost is high over roads. Dif-

ferent from on 2D, the sensitiv-

ity of traveling cost (cost) estima-

tion errors to obfuscation in road

networks varies considerably with

the underlying network structure.

As the example in Fig. 1 shows,

both obfuscated locations 𝐴 and

𝐵 have a small deviation from the

actual location 𝑃 on 2D and their

cost estimation errors are close (i.e.,

which are 60m and 50m, respec-

tively). However, in the road net-

work, the cost estimation error gen-

erated by 𝐵 (1090m) is much higher

than that of 𝐴 (90m), since a di-

rect path exists from𝐴 to𝑄 (500m),

while there is an unavoidable detour from 𝐵 to 𝑄 (1680m). Besides

the road network topology, other mobility constraints over roads

also impact the QoS, e.g. traffic [20]. To date, these conditions are

not considered in 2D-based methods.

The main reason for the above research gap is that optimal geo-

obfuscation over road networks is a very hard problem. First, the

impact of geo-obfuscation on both privacy and QoS may vary sig-

nificantly over different road segments. As such, geo-obfuscation

needs to be adaptive to various local road network topology and traf-

fic conditions, which generates high computation load. On the other

hand, the geo-obfuscation derivation has to be highly time-efficient,

as the obfuscation needs to be updated continuously as workers

move from one road segment to another. Moreover, the sensitivity

of QoS to geo-obfuscation is non-static over time, i.e., it may change

frequently due to traffic conditions [21] (e.g., peak/off-peak hours)

and dynamics of the worker pool (e.g., workers can enter/leave the

platforms at any time as needed) [12, 13].With these concerns, a key

challenge is how to design a geo-obfuscation approach with high

time-efficiency to protect worker location privacy over complex road

networks, particularly in highly dynamic large-scale SC systems.

In this paper, we tackle the aforementioned issues by developing

a time-efficient geo-obfuscation strategy to protect SC worker location

privacy over road networks. Rather than assuming workers’ mobility

on 2D, we describe workers’ mobility in a time-varying weighted

directed graph, a straightforward and convenient model to take into

both road network topology and dynamic traffic conditions. On

the basis of this new mobility model, we design a geo-obfuscation

(GO) function to provide a reference for workers to select their

obfuscated location. The objective of the GO function design is

twofold: i) maximize the overall privacy level of all the workers and

ii) ensure the cost-effectiveness of task assignment.

i) Privacy level maximization. The privacy criteria we aim to

maximize is the expected inference error (EIE) [22], i.e., the expected

distortion from the estimated location (by adversary) to the ac-

tual location. EIE assumes certain types of prior information that

the adversary may obtain, but without considering the posterior
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Figure 2: Example: Impact of worker distribution on QoS.

C-I: Worker Alice and task T1 are in the region. There is no quality loss if

Alice selects location “A” to report as T1 will be always assigned to Alice.

C-II: Task T2, and workers Bob and Charlie are added, where the optimal

assignment is to assign T1 to Charlie and T2 to Bob. To preserve the assign-

ment optimality, Alice has to limit her obfuscated location in a “safe region”.

If she selects her obfuscated location as “A” that is outside the safe region,

T1 will be assigned to Alice, which increases the cost to complete T1.

information leakage from obfuscated location. As a complemen-

tary criterion, we also require the GO function to achieve geo-

indistinguishability (GI) [10], which limits the posterior information

leakage through a differential privacy based criterion.

ii) Cost effective task assignment. To promote a cost-effective

assignment, existing geo-obfuscation methods (e.g., [13, 22]) pri-

marily focus on reducing the cost estimation error for single worker,

but without considering the worker location distribution over the

region as a whole. In fact, worker location distribution significantly

impacts to what extent the cost estimation error is allowed for

high QoS. Fig. 2(a)(b) gives an example, which illustrates that the

selection of the same obfuscated location (“A”) with the same cost

estimation error to the task (T1) may lead to a significantly different

impact on QoS given different worker distribution around. As such,

by performing task assignment sensitivity analysis, we identify a

“safe” region for each worker’s obfuscated location, within which

the obfuscated location still preserves the assignment optimality.

Considering the uneven distribution of workers, the privacy levels

of all workers are preserved but can be achieved at different levels

across different regions. For example, in the downtown area, the ob-

fuscation is limited to 0.5kmmaximum for the sake of QoS, but such

constraint is unnecessary to be enforced in the rural area, where

workers are sparsely distributed with larger safe regions on average.

To achieve both objectives i) and ii), we formulate the problem of

GO function generation (GFG) as a linear programming (LP) problem.

To solve GFG, the standard LP approaches (e.g., the simplexmethods

[23]) will generate extremely high computation load due to GFG’s

complexity. As a solution, we first conduct constraint reduction by

exploring network features of GI (Corollary 3.1). Further, by using

the angular block structure of the GFG’s constraint matrix, we apply

Dantzig-Wolfe decomposition to reformulate GFG into a two-level

optimization framework, which is composed of a master program

and a set of subproblems. The problems in both levels can be solved

efficiently and a near-optimal solution of the original GFG can be

iteratively derived via the communication between the two levels.

With respect to performance, simulation results based on Rome

taxi trajectory records [24] (including over one million GPS traces)

demonstrate that the privacy (measured by EIE) achieved by our

approach outperforms the state-of-the-art algorithms by at least

22.34%. Moreover, the simulation results indicate that, compared
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Figure 3: The framework of geo-obfuscation in SC.

with the 2D-based strategy, our approach reduces the total traveling

cost of participated workers by 14.22% on average.

In a nutshell, our contributions can be summarized as follows:

1) We develop a mobility model for SC workers operating over

roads by taking network-constrained features of workers over roads.

Based on the model, we design a GO function for workers to choose

their obfuscated location over the road network.

2) We formulate the problem of deriving the GO function as an LP

problem, called GFG,which aims tomaximize theworker overall pri-

vacy without compromising the QoS. GFG is novel not only because

it is a new class of location privacy protection problem, but also due

to the network-constrained mobility features taken into account

in the framework that can be applied to other LBS applications.

3) We design a time-efficient algorithm to solve GFG via constraint

reduction and Dantzig-Wolfe decomposition. We conduct a simu-

lation based on real-world dataset to test the performance of our

strategy. The experimental results demonstrate the superiority of

our method over the state of the arts. We also developed an SC

prototype and carried out a pilot study based on the prototype.

2 OVERALL APPROACH
Fig. 3 shows our geo-obfuscation framework in the SC system. In-

stead of frequently requiring location report from workers, our

framework only requires workers to upload their obfuscated loca-

tion before a snapshot of task assignment [12]. Before uploading

location, workers first need to download a GO function generated

by the server, and use the function to select the obfuscated location.

Consistent with state-of-the-art methods [13, 22], we assume that

the server may suffer from passive (eavesdropping) attack, not ac-

tive (modification) attacks, i.e., the adversary may obtain workers’

locations and the GO function, but cannot modify the GO function.

With the GO function, each worker takes his/her current location

as the input and obtains a probability distribution of the obfuscated

location as the output. Fig. 3 gives an example, where workers’

possible location is assumed to be discrete: {𝑣1, 𝑣2, 𝑣3, 𝑣4}. In this

case, the GO function can be represented as a (4×4)-matrix. Suppose

that a worker’s actual location is 𝑣2. As indicated by the matrix in

Fig. 3, the probabilities that this worker selects 𝑣1, 𝑣2, 𝑣3, and 𝑣4 as
the obfuscated location are 0.1, 0.4, 0.3, and 0.2, respectively.

Note that although the server takes charge of generating the

GO function, the workers’ location privacy is still guaranteed [12].

Specifically, the GO function is designed to satisfy the privacy crite-

ria (EIE and GI) even if the adversary knows workers’ reported lo-

cation and the GO function (more details will be given in Section 3).

In each round of task assignment, workers can label their status

by either available or occupied. Only available workers are consid-

ered as candidates for the task assignment and are responsible for

reporting their locations to the server. Once receiving a task, each

available worker will head towards the assigned task location in-

stantly. The worker’s status will be switched to occupied and the sta-

tus won’t be switched back to available until the worker completes

a task and is ready for new ones. For simplicity, in what follows,

when we mention “workers”, we refer to “available workers”.

As illustrated in Fig. 2(a)(b), we cannot ignore the impact of the

worker location distribution on the sensitivity of QoS to obfuscation.

Accordingly, we consider the worker location distribution (derived

from workers’ reported location) as a key parameter to generate

the GO function. As Fig. 3 shows, the whole process of our geo-

obfuscation strategy is composed of two steps:

Step I: Assignment sensitivity analysis. Givenworkers’ reported

location as the input, the SC server needs to distribute each task to

at least one worker, to minimize the total traveling cost of all the

participated workers. Although geo-obfuscation inevitably intro-

duces errors to the input, we note that such errors do not necessarily

degrade the QoS if the errors are controlled. As such, we derive a

“safe region” for each possible obfuscated location by resorting to

sensitivity analysis of the task assignment, such that the obfuscation

within such region preserves the assignment optimality.

Step II: GO function generation. After being initialized, the GO

function needs to be updated by the server based on the change of

workers’ reported location in each round of task assignment. We

assume the overall workers’ location distribution to be spatially

correlated in adjacent rounds [21], which allows workers to ob-

fuscate their current location with the GO function derived in the

previous round [12]. The GO function specifically focuses on the

following two goals:

G1) Cost-effective task assignment, i.e., the task assignment based

on the geo-obfuscated location achieves a near-optimal assignment.

To achieve this goal, for each real location, its obfuscated location

is limited to its safe region (derived in Step I) with a high probability

by the GO function.

G2) Location privacy maximization, i.e., EIE is maximized and GI is

satisfied. Considering that workers are unevenly distributed over

the road network, we allow the privacy levels (in term of EIE) to be

achieved in different levels in different regions.

3 MODEL
In this section, we introduce the system model, including the math

notations and the assumptions used throughout the paper.

GO Function. We letV denote the possible location set of workers

over the road network. The GO function X can be then represented

as a map: V → F , where F denotes the set of probability distribu-

tions overV . That is, given a worker’s true location 𝑣 ∈ V as the

input, X returns the corresponding probability distribution 𝑓𝑣 ∈ F

as the reference for the worker to select his/her obfuscated loca-

tion to report. Considering the computational tractability of the GO

function generation, like [10, 11], we consider the workers’ possible

location as a discrete and finite set V = {𝑣1, ..., 𝑣𝐾 }. As such, a more

efficient representation of the GO function is by means of a sto-

chastic matrix X = {𝑥𝑘,𝑙 }𝐾×𝐾 , namely the GO matrix, where each

𝑥𝑘,𝑙 denotes the probability of taking 𝑣𝑙 as the obfuscated location

given the actual location 𝑣𝑘 . In this case, given a real location 𝑣𝑘 as

the input, the GO function returns a vector [𝑥𝑘,1, ..., 𝑥𝑘,𝐾 ], where
each 𝑥𝑘,𝑙 (𝑙 = 1, ..., 𝐾 ) specifies the probability of selecting 𝑣𝑙 as the
obfuscated location.
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locations in V, and {𝐵,𝐶, 𝐷 } are the out-neighbors of 𝐴).

Graph-basedMobilityModel. Considering the network-constrained

mobility features of workers over a road network, we model work-

ers’ mobility in a weighted directed graph. The model assumes that

all the locations in V are in the road network. For each pair of

locations 𝑣𝑘 , 𝑣𝑙 ∈ V , we use 𝑐𝑘,𝑙 to denote the lowest traveling cost

(or traveling cost for simplicity) from 𝑣𝑘 to 𝑣𝑙 over the roads, e.g.,
which can be interpreted as the shortest traveling distance [13],

the lowest traveling time [21], or their combination in the road

network. As 𝑐𝑘,𝑙 is impacted by traffic condition and may change

over time, 𝑐𝑘,𝑙 needs to be updated by the SC server in each round.

By connecting each 𝑣𝑘 ∈ V to each of its out-neighbors 𝑣𝑛
(Definition 3.1) with a directed edge 𝑒𝑘,𝑛 from 𝑣𝑘 to 𝑣𝑛 , we build a

weighted directed graph G = (V, E), where V and E ⊆ V × V

denote the node set and the edge set, respectively. The weight of

each edge 𝑒𝑘,𝑛 is set by 𝑐𝑘,𝑛 . Fig. 4 gives an example on building

the graph given the discrete locations in the road network, where

traveling distance is considered as the “cost”. Proposition 3.1 implies

that it is sufficient to use G to derive 𝑐𝑘,𝑙 for any pair of locations

𝑣𝑘 , 𝑣𝑙 ∈ V , as the derivation of 𝑐𝑘,𝑙 is essentially to find the shortest

path (Definition 3.2) from 𝑣𝑘 to 𝑣𝑙 in G.

Definition 3.1. (Out-neighbor and in-neighbor) ∀𝑣𝑘 , 𝑣𝑙 ∈ V , 𝑣𝑙
is defined as an out-neighbor of 𝑣𝑘 (and also 𝑣𝑘 is defined as an

in-neighbor of 𝑣𝑙 ), if workers can travel from 𝑣𝑘 to 𝑣𝑙 via the shortest
route without visiting any other location in V .

Definition 3.2. (Shortest path) ∀𝑣𝑘 , 𝑣𝑙 ∈ V , the shortest path

from 𝑣𝑘 to 𝑣𝑙 in G is defined as the path from 𝑣𝑘 to 𝑣𝑙 such that the

total sum of the edges weights is minimum.

Proposition 3.1. ∀𝑣𝑘 , 𝑣𝑙 ∈ V , 𝑐𝑙,𝑘 is equal to the sum weight of

the shortest path from 𝑣𝑘 to 𝑣𝑙 in G (detailed proof can be found in

our technical report in [25]).

Threat Model and Privacy Criteria. Like [11, 26], we assume

that the SC server may suffer from an eavesdropping attack, i.e.,

information such as workers’ reported location, the GO matrix X,

and workers’ prior location distribution 𝑓𝑃 (𝑣𝑘 ) (𝑣𝑘 ∈ V) can be

possibly disclosed or leaked to an adversary. The adversary can

then estimate the probability distribution of workers’ real location

via Bayesian inference models [12, 14].

We let the random variables 𝑃 and 𝑃 denote a worker’s real

and obfuscated locations, respectively. Given a worker’s reported

location 𝑣𝑙 , the adversary first estimates the posterior probability of

the worker’s real location by resorting to the Bayes’ Equation:

𝑓𝑃 |𝑃=𝑣𝑙
(𝑣𝑘 ) =

𝑓𝑃 (𝑣𝑘 )𝑥𝑘,𝑙∑
𝑗 𝑓𝑃 (𝑣 𝑗 )𝑥 𝑗,𝑙

, ∀𝑘 = 1, 2, ..., 𝐾 . (1)

Based on the posterior, the adversary then estimates the worker’s

actual location by finding the location 𝑣 ∈ V that minimizes the

expected inference error, i.e.,

𝑣 = argmin𝑣𝑟 ∈V
∑
𝑣𝑘 ∈V 𝑓𝑃 |𝑃=𝑣𝑙

(𝑣𝑘 ) 𝑑 (𝑣𝑟 , 𝑣𝑘 ), (2)

where 𝑑 can be either Hamming distance or Euclidean distance

[14, 22]. Like [14, 22], in this paper, we consider 𝑑 as Euclidean

distance. The model can be also extended to Hamming distance.

A) Expected inference error (EIE). We define the adversary’s EIE, also

known as the unconditional expected privacy [22, 27], by∑
𝑙 Pr

(
𝑃 = 𝑣𝑙

) ∑
𝑘 𝑓𝑃 |𝑃=𝑣𝑙

(𝑣𝑘 ) 𝑑 (𝑣, 𝑣𝑘 ) =
∑
𝑙 𝑥𝐾+1,𝑙 , (3)

where 𝑥𝐾+1,𝑙 = min𝑣𝑟
∑
𝑘 𝑓𝑃 (𝑣𝑘 )𝑥𝑘,𝑙𝑑 (𝑣𝑟 , 𝑣𝑘 ) (𝑙 = 1, ..., 𝐾 ) (4)

is an intermediate variable to facilitate the computations (details

are given in Section 4.2). EIE essentially describes the expected

distortion from the estimated location (by adversary) to the actual

location, and higher EIE implies higher privacy level achieved. For

simplicity, we let x𝑙 = [𝑥1,𝑙 , 𝑥2,𝑙 , ..., 𝑥𝐾,𝑙 , 𝑥𝐾+1,𝑙 ]
� (𝑙 = 1, ..., 𝐾 ).

B) Geo-indistinguishability (GI). EIE assumes certain types of prior

information that the adversary may obtain, but does not consider

the posterior information leaked from obfuscated location. As such,

we require the GO function to achieve GI [10], which limits the

posterior information leakage through a differential privacy based

criteria. GI over roads is formally defined in Definition 3.3 [13]:

Definition 3.3. (GI) A GO function X satisfies 𝜖-GI if Equ. (5) is
satisfied ∀𝑣 𝑗 , 𝑣𝑘 ∈ V ,

𝑓𝑃 |�̃�=𝑣𝑙

(
𝑣𝑗
)

𝑓𝑃 |�̃�=𝑣𝑙
(𝑣𝑘 )

≤ 𝑒
𝜖 min

{
𝑐 𝑗,𝑘 ,𝑐𝑘,𝑗

}
×
𝑓𝑃

(
𝑣𝑗
)

𝑓𝑃 (𝑣𝑘 )
, ∀𝑣𝑙 ∈ V (5)

where 𝜖 is the parameter to quantify how much the worker’s actual

location is disclosed according to the reported location, i.e., higher 𝜖
implies more information disclosed and a lower privacy level achieved.

Intuitively, Equ. (5) indicates that the reported location 𝑣𝑙 won’t
provide enough information to adversary to distinguish the true

location among nearby ones. According to Definition 3.3, given each

possible obfuscated location 𝑣𝑙 , we need to check the posteriors

of each pair of locations 𝑣 𝑗 , 𝑣𝑘 ∈ V , which generates 𝑂 (𝐾3) con-

straints in total. Fortunately, the transitivity property of GI over

roads (Theorem 3.2) allows us to reduce the number of constraints

from𝑂 (𝐾3) to𝑂 (𝐾𝐻 ) without losing the optimality (Corollary 3.1),

where 𝐻 = |E | denotes the number of edges in G.

Theorem 3.2. (Transitivity [13]) Given any pair of locations

𝑣1, 𝑣𝑛 ∈ V connected by the shortest path: (𝑣1, 𝑣2) → ... → (𝑣𝑛−1, 𝑣𝑛),

Each pair (𝑣𝑘 , 𝑣𝑘+1) satisfies 𝜖-GI (𝑘 = 1, ..., 𝑛 − 1) ⇒ (𝑣1, 𝑣𝑛) satisfies 𝜖-GI.

Corollary 3.1. (Constraint reduction) The end locations of each

edge in G satisfies 𝜖-GI ⇒ Each pair of locations inV satisfies 𝜖-GI.

Corollary 3.1 indicates that, to satisfy 𝜖-GI, it is sufficient to for-

mulate the GI constraints only for the end points of each edge in G,

where the total number of GI constraints is𝑂 (𝐾𝐻 ). In practice, as G

is approximately a planar graph, the number of edges and nodes inG

are actually close, i.e., 𝐻 ≈ 𝐾 , which will be also demonstrated by a

real-dataset in Table 1 in Section 6. Hence, after the constraint reduc-

tion, the number of GI constraints in GFG is approximately 𝑂 (𝐾2).

Finally, by plugging the real location posterior (Equ. (1)) into

Equ. (5), the GI constraints for each obfuscated location 𝑣𝑙 can be

rewritten as a set of linear constraints for x𝑙 :

𝑥𝑘,𝑙 𝑓𝑃
(
𝑣 𝑗
)
− 𝑒𝜖𝑐 𝑗,𝑘 𝑓𝑃 (𝑣𝑘 ) 𝑥 𝑗,𝑙 ≤ 0,∀(𝑣𝑘 , 𝑣 𝑗 ) ∈ E . (6)

For simplicity, we use 𝚽GI
𝑙

to represent the GI constraint matrix for

x𝑙 , i.e., 𝚽
GI
𝑙
x𝑙 ≤ 0, where 𝚽GI

𝑙
has 2𝐻 rows and 𝐾 + 1 columns:
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𝚽GI
𝑙 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . · · · · · · · · · . .
. ...

· · · 𝑓𝑝 (𝑣𝑗 ) · · · −𝑒𝜖𝑐 𝑗,𝑘 𝑓𝑝 (𝑣𝑘 ) · · · 0
· · · −𝑒𝜖𝑐 𝑗,𝑘 𝑓𝑝 (𝑣𝑗 ) · · · 𝑓𝑝 (𝑣𝑘 ) · · · 0

. .
.

· · · · · · · · ·
. . .

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
}

∀𝑒 𝑗,𝑘
∈ E

where each 2 rows correspond to a pair of adjacent locations in G.

4 SYSTEM DESIGN
In this section, we introduce the design of our geo-obfuscation

strategy, including the assignment sensitivity analysis (in Section

4.1) and the GO function generation (in Section 4.2).

4.1 Task Assignment and Sensitivity Analysis
Task assignment. We consider a scenario where 𝑀 tasks need

to be assigned to 𝑁 workers (𝑁 > 𝑀 , i.e., the platform has more

workers than tasks [5]). The objective of task assignment is to

ensure each task to be assigned to one worker and the total traveling

cost of all the participated workers is minimized. The assignment

can be represented by an indicator matrix Z = {𝑧𝑖, 𝑗 }𝑁×𝑀 , where

each 𝑧𝑖, 𝑗 indicates whether task 𝑗 is assigned to worker 𝑖 , i.e., 𝑧𝑖, 𝑗 = 1

if task 𝑗 is assigned toworker 𝑖; otherwise, 𝑧𝑖, 𝑗 = 0.Z needs to satisfy

the constraints
∑
𝑖 𝑧𝑖, 𝑗 = 1 for each 𝑗 ( 𝑗 = 1, ..., 𝑀), i.e., each task 𝑗

is assigned to one worker, and the constraints
∑
𝑗 𝑧𝑖, 𝑗 ≤ 1 for each

𝑖 (𝑖 = 1, ..., 𝑁 ), i.e., each worker 𝑖 can complete up to 1 task. We

let Ω =
{
Z

��∑
𝑖 𝑧𝑖, 𝑗 = 1,∀𝑗,

∑
𝑗 𝑧𝑖, 𝑗 ≤ 1, ∀𝑖

}
denote the constrained

space for Z. Given each worker 𝑖’s reported location 𝑣𝑙𝑖 (𝑖 = 1, ..., 𝑁 )

and each task 𝑗 ’s location 𝑣𝑞 𝑗 ( 𝑗 = 1, ..., 𝑀), the task assignment

problem can be formulated as:

min
∑
𝑖
∑
𝑗 𝑐𝑙𝑖 ,𝑞 𝑗 𝑧𝑖, 𝑗 s.t. Z ∈ Ω, 𝑧𝑖, 𝑗 ∈ {0, 1} , (7)

which can be solved by well-developed algorithms like the Hungar-

ian algorithm or linear programming (LP) based methods [23].

Sensitivity analysis. We choose to use LP based approaches to

solve the assignment problem, from which we can make use of well-

developed LP sensitivity analysis (SA) tools to yield a “safe region”

for geo-obfuscation [23]. Specifically, we first relax the assignment

problem to LP by removing the integrality constraints 𝑧𝑖, 𝑗 ∈ {0, 1}
in Equ. (7). After that, we derive the optimal solution of the relaxed

problem with standard LP approaches (e.g., the simplex methods

[23]). As the constraint matrix (defined by Ω) is totally unimodular,

the LP’s solution has to be integral, indicating that it is also the

optimal solution of the original assignment problem [23]. In what

follows, we let Z̃ represent the optimal assignment derived based

on the workers’ obfuscated location.

As we have assumed, the workers’ location distribution is spa-

tially correlated in adjacent rounds, which allows us to derive the

GO matrix in the next round based on the workers’ current re-

ported location. Given the existing reported locations 𝑣𝑙1 , ..., 𝑣𝑙𝑁 ′

from unsigned workers (without loss of generality, assuming work-

ers 𝑖 = 1, ..., 𝑁 ′ receive no assignment), we aim to identify a “safe

region” of obfuscated location for any new report. Particularly, for

each candidate obfuscated location 𝑣𝑙 ∈ V from worker 𝑖 ′, we
derive 𝑣𝑙 ’s critical region Θcri

𝑙
(Θcri
𝑙

⊆ V) via SA, such that the

corresponding real location within Θcri
𝑙

generates the same optimal

solution with Z̃:

Θcri
𝑙

=
{
𝑣𝑘

���Z̃ = argminZ∈Ω

(∑
𝑗 𝑐𝑘,𝑞 𝑗 𝑧𝑖′, 𝑗 (𝑡) +

∑𝑁 ′

𝑖=1
∑
𝑗 𝑐𝑙𝑖 ,𝑞 𝑗 𝑧𝑖, 𝑗

) }
.

A

(a) # of workers = 5

A

(b) # of workers = 15

Figure 5: Example: the safe region of the location 𝐴.

Here,
∑
𝑗 𝑐𝑘,𝑞 𝑗 𝑧𝑖′, 𝑗 (𝑡) and

∑𝑁 ′

𝑖=1
∑
𝑗 𝑐𝑙𝑖 ,𝑞 𝑗 𝑧𝑖, 𝑗 respectively represent

the real cost of worker 𝑖 ′ and the estimated total cost based on the

existing reports in Z.Θcri
1 , ...,Θcri

𝐾 can be derived in parallel with the

existing SA works [23]. Given a worker’s real location, we define

the safe region of obfuscation as the set of locations’ with critical

region covering the real location. Clearly, if each worker selects

the obfuscated within the safe region, the assignment will achieve

a near-optimal solution. Fig. 5 gives an example to compare the

safe regions of one location (“A”) with different workers distributed

around, which implies that the worker has smaller “safe region”

when the density of workers is higher over the region.

Critical region constraints. To ensure each obfuscated location

to be within the safe region with a high probability, we require

that for any candidate obfuscated location 𝑣𝑙 , the posterior of real

location covered by Θcri
𝑙
, Pr

(
𝑃 ∈ Θcri

𝑙

��𝑃 = 𝑣𝑙

)
, is no smaller than a

threshold 1 − 𝜂, defining the critical region constraints:

Pr
(
𝑃 ∈ Θcri

𝑙

��𝑃 = 𝑣𝑙
)
≥ 1 − 𝜂, (8)

where 𝜂 ∈ [0, 1) is a predefined small constant. By plugging the

posterior (Equ. 1) into Equ. (8), the critical region constraints can

be also written as a set of linear constraints for x𝑙 (𝑙 = 1, ..., 𝐾 ):∑
𝑗 𝑓𝑃 (𝑣𝑗 )𝑥 𝑗,𝑙 −

∑
𝑣𝑘 ∈Θ

cri
𝑙
𝑓𝑃 (𝑣𝑘 )𝑥𝑘,𝑙 /(1 − 𝜂) ≤ 0. (9)

For simplicity, we use a (𝐾 + 1)-dimension vector 𝚽Cr
𝑙

to represent

the critical region constraint vector for x𝑙 , i.e., 𝚽
Cr
𝑙
x𝑙 ≤ 0, where

𝚽Cr
𝑙 = [𝑓𝑃 (𝑣1) , ..., 𝑓𝑃 (𝑣𝑙 ) −

∑
𝑣𝑘 ∈Θ

cri
𝑙
𝑓𝑃 (𝑣𝑘 )/(1 − 𝜂)︸���������������������������������������︷︷���������������������������������������︸

the 𝑙 th element

, ..., 𝑓𝑃 (𝑣𝐾 ), 0]

Note that even with the critical region constraints, the optimality

of the task assignment still cannot be guaranteed due to the fol-

lowing two reasons: 1) The safe region of obfuscated location for

each worker is calculated separately, but without considering the

uncertainty of other workers’ obfuscated location. 2) The derived

safe region is calculated based on workers’ reported location in the

last round and hence it is possibly “unsafe” in the current round.

The above two limitations are unavoidable. For 1), it is computa-

tional intractable to derive the safe regions for all the workers, as the

number of possible combinations of estimated costs from workers

increases exponentially with the number of workers. For 2), calculat-

ing the GO function with the reported location in the current round

is infeasible, since workers cannot report their location before the

GO function being generated. However, even with these two lim-

itations, our approach still approximates the optimal assignment

closely according to the experimental results (Fig. 10(b) in Section 6).

4.2 GO Function Generation Problem

The GO function is initialized when the system is first setup. After

then, the server updates the GO function (matrix) at each round

based on the workers’ new reported location as well as the critical

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1279



regions derived from the assignment sensitivity analysis. By taking

the GO matrix X as the decision variable, we formulate the problem

of generating the GO matrix as a mathematical optimization prob-

lem, of which the objective is to maximize the overall expected in-

ference error (EIE)
∑
𝑙 𝑥𝐾+1,𝑙 (Equ. (3)), while satisfying both critical

region constraints (Equ. (9)) and GI constraints (Equ. (6)). According

to Equ. (4), we have 𝑥𝐾+1,𝑙 −
∑
𝑘 𝑓𝑃 (𝑣𝑘 )𝑥𝑘,𝑙𝑑 (𝑣𝑟 , 𝑣𝑘 ) ≤ 0, ∀𝑣𝑟 ∈ V ,

which can be also written in the form of 𝚽In
𝑙
x𝑙 ≤ 0, where 𝚽In

𝑙
is a

matrix with 𝐾 rows and 𝐾 + 1 columns:

𝚽In
𝑙 =

⎡⎢⎢⎢⎢⎢⎣
−𝑓𝑃 (𝑣1)𝑑 (𝑣1, 𝑣1) · · · −𝑓𝑃 (𝑣𝐾 )𝑑 (𝑣1, 𝑣𝐾 ) 1

...
. . .

...
...

−𝑓𝑃 (𝑣1)𝑑 (𝑣𝐾 , 𝑣1) · · · −𝑓𝑃 (𝑣𝐾 )𝑑 (𝑣𝐾 , 𝑣𝐾 ) 1

⎤⎥⎥⎥⎥⎥⎦
Given that the constraints 𝚽GI

𝑙
x𝑙 ≤ 0, 𝚽Cr

𝑙
x𝑙 ≤ 0, 𝚽In

𝑙
x𝑙 ≤ 0, and

the objective function
∑
𝑙 𝑥𝐾+1,𝑙 are all linear, and the decision

variables X = {𝑥𝑘,𝑙 }𝐾×𝐾 are defined in a continuous region, the

GO function generation (GFG) problem can be formulated as an LP:

max
∑
𝑙

𝑥𝐾+1,𝑙 (10)

s.t. 𝚽GI
𝑙 x𝑙 ≤ 0, 𝚽Cr

𝑙 x𝑙 ≤ 0, 𝚽In
𝑙 x𝑙 ≤ 0, ∀𝑙 (11)∑

𝑙

𝑥𝑘,𝑙 = 1, ∀𝑘 (prob. unit measure) (12)

Note that in the GI constraints (Equation (5)) and the critical

regions constraints (Equation (9)) of GFG, distances between work-

ers/tasks are defined over the road network and can be updated by

the server in each round based on the traffic. Therefore, both road

network topology and traffic dynamics have been considered by

the solution of GFG. GFG can be solved by standard LP approaches

such as the simplex methods [23]. This, however, introduces chal-

lenges with respect to time efficiency and scalability. The number

of decision variables in the GO matrix X is quadratic to the number

of discrete locations in V , e.g., thousands of discrete locations will

generate millions of decision variables in GFG, leading to an ex-

tremely high computation load. On the other hand, to account for

realistic applications where worker location distribution changes

all the time, the derivation of optimal X is supposed to be time-

efficient to handle the highly dynamic inputs. To tackle this issue,

in Section 5, we introduce how to generate the GO matrix in a

scalable and time-efficient way.

5 GO FUNCTION GENERATION

A promising route to solve large-scale LP problems is to adopt de-

composition techniques based on how decision variables in the prob-

lems are coupled [28]. For simplicity, we let x =
[
x
�
1 . . . x�𝐾

]�
and 𝚽𝑙 =

[
𝚽GI�
𝑙

𝚽Cr�
𝑙

𝚽In�
𝑙

]�
. The whole GFG constraint ma-

trix𝚽 for x (i.e.,𝚽x ≤ 0) is shown in Fig. 6(a), where a block angular

structure can be found, i.e., 1) the constraint matrices𝚽1, ...,𝚽𝐾 (for

x1, ..., x𝐾 respectively) are all disjoint; 2) only the joint constraints∑
𝑙 𝑥𝑘,𝑙 = 1 (𝑘 = 1, ..., 𝐾 ) link together the different decision vectors

x1, ..., x𝐾 . Such block angular structure makes GFG well-suited to

Dantzig-Wolfe (DW) decomposition [29].

DW decomposition relies on column generation (CG) to improve

the tractability of large-scale LP [30]. By rewriting GFG in a DW

formulation (defined in Equation (13)-(14)) and solving it via the

1

1

2

K

1

0

0

1

1

0

0

1

1

0

0
...Joint 

constraints

Disjoint 
constraints

Master problem with 
a subset of columns

sub1

sub2

subK

Optimality check

Upper 
level

Lower 
level

(a) The block angular structure of
G G’s constraint matrix

(b) Two levels of W
decomposition

Figure 6: DW decomposition.

revised simplex method [23], most extreme points of GFG are non-

basic (i.e., the corresponding decision variables are set by zero)

during the whole search process [31]. Therefore, the DW formu-

lation can be solved by involving only a portion of extreme points.

5.1 DW Formulation
We let Λ𝑙 denote the polyhedron defined by the constraint matrix

Φ𝑙 (𝑙 = 1, ..., 𝐾) and let X𝑙 =
{
x̂
1
𝑙
, ..., x̂𝑇𝑙

𝑙

}
denote the set of extreme

points of Λ𝑙 . Then, any decision vector x𝑙 ∈ Λ𝑙 can be represented

as a convex combination of x̂1
𝑙
, ..., x̂𝑇𝑙

𝑙
(Minkowski-Weyl’s Theorem

[23]): x𝑙 =
∑𝑇𝑙
𝑡=1 𝜆𝑙,𝑡 x̂

𝑡
𝑙
, where

∑𝑇𝑙
𝑡=1 𝜆𝑙,𝑡 = 1 and 𝜆𝑙,𝑡 ≥ 0. Replacing

x𝑙 by
∑𝑇𝑙
𝑡=1 𝜆𝑙,𝑡 x̂

𝑡
𝑙
, GFG can be rewritten as the following master

program (MP):

max
∑
𝑙

∑
𝑡

𝜆𝑙,𝑡𝑥
𝑡
𝐾+1,𝑙 (13)

s.t.
∑
𝑙

∑
𝑡

𝜆𝑙,𝑡𝑥
𝑡
𝑘,𝑙 = 1, ∀𝑘,

𝑇𝑙∑
𝑡=1

𝜆𝑙,𝑡 = 1, 𝜆𝑙,𝑡 ≥ 0, ∀𝑙 (14)

The decision variables in MP are 𝜆𝑙,𝑡 (𝑡 = 1, ...,𝑇𝑙 , 𝑙 = 1, ..., 𝐾) and
each 𝜆𝑙,𝑡 corresponds to an extreme point in the polyhedron Λ𝑙 .
Since the total number of extreme points in all the polyhedrons

are exponential to 𝐾 (the number of discrete locations in 𝑉 ), MP

itself does not decrease the time complexity if it is solved directly

by standard LP approaches. Fortunately, most extreme points in

DW-formulated MPs are non-basic when searching the optimal

[31], indicating that the idea of CG can be applied.

5.2 The Column Generation Algorithm
The algorithm is composed of the steps S1-S3 (the pseudo code can

be found in the technical report [25]):

S1: Initialization. By considering only a subset of extreme points

in MP, a restricted MP (RMP) (Definition 5.1) is formulated.

Definition 5.1. (RMP) Given a subset of extreme pointsX𝑙 (X𝑙 ⊆

X𝑙 ) in each polyhedron Λ𝑙 , we define the corresponding RMP, denoted

by RMP(X1, ...,X𝐾 ), as the MP with onlyX1, ...,X𝐾 being considered:

𝝀
∗
=

{
max

∑
𝑙
∑
𝑡∈X𝑙

𝜆𝑙,𝑡𝑥
𝑡
𝐾+1,𝑙

s.t.
∑
𝑙
∑
𝑡∈X𝑙

𝜆𝑙,𝑡𝑥
𝑡
𝑘,𝑙 = 1, ∀𝑘,

∑𝑇𝑙
𝑡=1 𝜆𝑙,𝑡 = 1, 𝜆𝑙,𝑡 ≥ 0, ∀𝑙

}

where 𝝀
∗
denotes the optimal solution of RMP(X1, ..., X𝐾 ).

Here, we also define the dual problem of RMP (D-RMP), which

will be used in S2.

Definition 5.2. (D-RMP) The dual problem of RMP(X1, ..., X𝐾 )

[23], denoted by D-RMP(X1, ..., X𝐾 ), is defined as:

(𝝅∗, 𝝁∗) =

{
min

∑
𝑘 𝜋𝑘 +

∑
𝑙 𝜇𝑙

s.t.
∑
𝑘 𝑥

𝑡
𝑘,𝑙𝜋𝑘 + 𝜇𝑙 ≥ 𝑥

𝑡
𝐾+1,𝑙 , ∀𝑡 ∈ X𝑙 , 𝑙 = 1, ..., 𝐾 .

}
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where (𝝅∗, 𝝁∗) (𝝅∗ = [𝜋∗1, ..., 𝜋
∗
𝐾 ] and 𝝁

∗ = [𝜇∗1, ..., 𝜇
∗
𝐾 ]) denotes the

optimal solution of D-RMP(X1, ..., X𝐾 ).

S2: Optimality test. We solve the RMP and test whether its solu-

tion 𝝀
∗
achieves MP’s optimal based on Proposition 5.1.

Proposition 5.1. (Optimality test criteria) To test 𝝀
∗
’s optimality

in MP, it is sufficient to test whether (𝝅∗, 𝝁∗) defined in Definition

5.2, satisfies min𝑡 ∈X𝑙

{∑
𝑘 𝑥

𝑡
𝑘,𝑙
𝜋∗𝑘 + 𝜇∗𝑙 − 𝑥𝑡

𝐾+1,𝑙

}
≥ 0 (𝑙 = 1, ..., 𝐾 .),

where the derivation of min𝑡 ∈X𝑙

{∑
𝑘 𝑥

𝑡
𝑘,𝑙
𝜋𝑘 + 𝜇𝑙 − 𝑥𝑡

𝐾+1,𝑙

}
is essen-

tially an LP problem (labeled by sub𝑙 ) with the decision variables x𝑙
constrained in the polyhedron Λ𝑙 :

sub𝑙 : x
∗
𝑙 =

{
min

∑
𝑘 𝑥𝑘,𝑙𝜋

∗
𝑘 + 𝜇∗𝑙 − 𝑥𝐾+1,𝑙 s.t. x𝑙 ∈ Λ𝑙 .

}
where x∗𝑙 is the optimal solution of sub𝑙 . The detailed proof of Propo-

sition 5.1 can be found in our technical report in [25].

S3: Column generation. We use 𝜁𝑙 to denote the objective value

of sub𝑙 , i.e., 𝜁𝑙 = minx𝑙 ∈Λ𝑙
{∑

𝑘 𝑥𝑘,𝑙𝜋
∗
𝑘 + 𝜇∗𝑙 − 𝑥𝐾+1,𝑙

}
. If ∃𝜁𝑙 < 0,

the optimal of MP hasn’t been achieved. Then, the corresponding

sub𝑙 will suggest a new extreme point (column) to add to the RMP

to improve the objective value. After that, we move to S2 to test

the optimality of the new solution.

S3 and S2 are repeated until the MP’s optimal is found. As Propo-

sition 5.1 indicates, the process of optimality test can be partitioned

into a list of subproblems sub1, ..., sub𝐾 , where each sub𝑙 (𝑙 =
1, ..., 𝐾 ) has its decision variables x𝑙 only constrained in the polyhe-

dron Λ𝑙 . As the decision variables x1, ..., x𝐾 are fully decoupled in

sub1, ..., sub𝐾 , they can be derived in parallel. As Fig. 6(b) shows,

the process of S2 and S3 follows a two-layer framework: a RMP in

the upper layer and sub1, ..., sub𝐾 in the lower layer. The two layers

communicate with each other and are updated in each iteration,

until the RMP’s optimal solution converges to the MP’s optimal.

We use the superscript (𝑛) to denote the values set/derived in

iteration 𝑛. Note that RMP and each sub𝑙 can be solved efficiently

in each iteration, as they only contain 𝑂 (𝐾) decision variables

(i.e., (𝝅 , 𝝁) and x𝑙 ). When the algorithm converges to the near

optimal, we need to solve RMP(X
(𝑛)
1 , ..., X

(𝑛)
𝐾 ), which has at most

𝑛𝐾 decision variables, as we only add up to 1 column for each

polyhedron in each iteration. Hence, the next question is howmany

iterations (denoted by 𝐿) are needed for convergence.

Convergence analysis. To improve the speed of convergence, in

S1, we initialize each X𝑙 by the extreme point e𝑙 (i.e., a 𝐾 + 1

dimension vector with the 𝑙th entry equal to 1 and all the other

entries equal to 0). It means that the initial RMP only includes the

extreme points e1, ..., e𝐾 . By selecting e1, ..., e𝐾 , the feasible region

of the RMP is guaranteed to be non-empty, i.e., there is always a

feasible solution𝝀with 𝜆1
𝑙
= 1 and 𝜆𝑡

𝑙
= 0∀𝑡 > 1 (𝑙 = 1, ..., 𝐾 ), which

ensures D-RMP to be bounded and hence improves the algorithm

convergence at the beginning [30].

Nevertheless, in CG, there is possibly a long tail of the conver-

gence (pointed out by our experimental results in Fig. 8(a)). As

a solution, we set a negative threshold 𝜉 with small magnitude,

such that the algorithm will be ended immediately once min𝑙 {𝜁𝑙 }
reaches 𝜉 . Our experimental results indicate that, with proper value

set to 𝜉 , the convergence of CG will be improved significantly (e.g.,

use up to 5 iterations in Fig. 8(d) and Fig. 12(c)) with the objective

A
B C

D

E

F

G

H

I

(a) Heap map of GPS records over Rome.
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Figure 7: The Rome taxi cab dataset.

value (EIE) sacrificed a little (e.g., by up to 6.37% in Fig. 10). More

details will be discussed in Section 6.1. For theoretical interests, we

give an upper (dual) bound of the MP’s optimal in Theorem 5.2 to

check how close our solution can achieve the optimal:

Theorem 5.2. In each iteration 𝑛 of the CG algorithm, 𝜔 (𝑛) =∑
𝑘 𝜋

∗(𝑛)
𝑘

+
∑
𝑙

(
𝜇
∗(𝑛)
𝑙

− 𝜁
(𝑛)
𝑙

)
offers an upper bound of MP’s optimal.

The detailed proof can be found in our technical report [25].

6 PERFORMANCE EVALUATION
In this section, we turn our attention to practical applications of our

geo-obfuscation approach. We carry out an extensive evaluation

of our method using a real dataset of over one million vehicle GPS

records in Section 6.1, and report experimental results with our sys-

tem prototype in Section 6.2. The main metrics we measure include:

(i) Privacy level: Expected inference errors (EIE) defined by Equ. (3).

(ii) Total traveling cost, defined as the total traveling distance of all

the participatingworkers to the task location.We primarily consider

“traveling distance” as the cost in the experiments as other related

metrics, e.g. traveling time, are hard to measure in the dataset. The

traveling distance from each worker to his/her task is calculated

using the Dijkstra’s algorithm [19].

(iii) Number of iterations to derive the GO function in CG.

6.1 Trace-driven Simulation
Dataset. We conduct simulations by using a publicly available taxi

cab trajectory dataset in Rome [24]. We select to use a taxi dataset

since taxi services can be also considered as a type of SC operating

over the road network, where a customer’s “pickup location” can

be considered as the task location. The dataset contains GPS coor-

dinates of approximately 290 taxis in Rome collected over 30 days.

Fig. 7(a) depicts the heat map of all taxi cabs’ recorded location. As

shown, the taxi cabs’ location records are not evenly distributed

over the city, e.g., taxi cabs are more likely located in downtown

rather than in the suburbs. We grid the whole map, and select 9

regions “A”, “B”, ..., “I” (Fig. 7(a) shows the regions on the map) to

check how the workers’ density can impact both privacy and QoS,

e.g. “A”–“C” are in downtown with high-density workers, while

regions “D”–“I” are in suburbs with low-density workers. Fig. 7(b)

compares the number of GPS records in different regions.

Benchmarks. We compare our geo-obfuscation strategy with two

representative geo-obfuscation algorithms:

1) 2D-based approach (2D) [12], which aims to minimize the total

traveling cost with geo-indistinguishability satisfied.

2) VSC-Based approach (VSC) [13], which aims to protect location

privacy of vehicles in SC, with vehicles’ network-constrained mo-

bility features considered. Similar to our method, VSC determines
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Figure 8: Time efficiency of CG.

the obfuscation function by following an LP framework. But the

objective of VSC is to minimize the cost estimation error of a single

worker without considering the worker distribution over the region.

3) Laplacian obfuscation (Laplace), where the obfuscation probabil-

ities are calculated by 𝑓𝑃 |𝑃=𝑣𝑘
(𝑣𝑙 ) ∝ 𝑒−𝜖

𝑑 (𝑣𝑙 ,𝑣𝑘 )
𝐷max , and 𝐷max is the

maximum distance between any two locations in the target region.

Time-efficiency. In Corollary 3.1, we have theoretically proved

that the number of GI constraints is reduced to 𝑂 (𝐾𝐻 ) by using

constraint reduction, where 𝐾 and 𝐻 denote the number of nodes

and the number of edges in the graph G, respectively. We now

test how the number of GI constraints is actually reduced in the

real-world road map. We sample a set of discrete locations in each

region, where every 10 road segments1 have at least one location

point sampled. We then build the weighted directed graph given

the sample in each region. Table 1 shows the ratio of 𝐻 to 𝐾 in G

across different regions as well as the percentage of GI constraints

reduced by the constraint reduction. The table demonstrates that

1) 𝐻 is not significantly higher than 𝐾 in any region, e.g., 𝐻/𝐾 is at

most 1.42; 2) the number of GI constraints is significantly reduced

by constraint reduction, i.e., on average it is reduced by 99.5%.

We next evaluate the time efficiency of CG. Here, we only depict

the results for region “A” as a representative, which has relative

higher number of road segments (9,861 segments) and taxis’ GPS

records (163,938 records), which tends to generate higher compu-

tation load. Fig. 8(a) shows the change of min𝑙 {𝜁𝑙 } over iterations
(i.e., the algorithm achieves the optimal when min𝑙 {𝜁𝑙 } = 0 (Propo-

sition 5.1)). We have two observations from the figure: 1) min𝑙 {𝜁𝑙 }
converges faster when the location sample size 𝐾 is smaller, and 2)

after a fast convergence of min𝑙 {𝜁𝑙 } in first 3 or 4 iterations, there

is a long tail in the convergence. In Fig. 8(b), we also show the

dual gap of the algorithm, i.e., the gap between 𝜔 (𝑛) (derived in

Theorem 5.2) and the maximum EIE achieved by the RMP. As the

optimal EIE is within the dual gap, the figure indicates that our

approach can achieve near-optimal after the 4th iteration, where

1Road segment is defined as the segment without furcation, turn, joining with other
road segments [13]
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Figure 9: Comparison with 2D and VSC.

the approximation ratio (the ratio of the optimal EIE to the EIE

achieved by our approach) is up to 1.064.

Table 1: Constraints reduction.

Regions A B C D E F G H I

𝐻/𝐾 ratio 1.31 1.42 1.19 1.28 1.08 1.21 1.22 1.27 1.22

Pct. of constraints reduced 99.9 99.8 99.6 99.7 99.5 99.3 99.5 99.0 99.4

As indicated by Fig. 8(a), the algorithm convergence will slow

down after min𝑙 {𝜁𝑙 } reaches a certain level. Hence, it is unnecessary
to wait until min𝑙 {𝜁𝑙 } = 0. Instead, we choose to improve the time

efficiency of our algorithm by slightly sacrificing the optimality of

the GO function. We select a negative number 𝜉 < 0 that is close to

0 as a threshold of min𝑙 {𝜁𝑙 }, i.e., the algorithm is terminated once

min𝑙 {𝜁𝑙 } ≥ 𝜉 . Clearly, a higher value for 𝜉 enforces the derived GO

function to better approximate the optimal, but tends to generate a

higher computation load. Fig. 8(c) shows the number of iterations

of the algorithm and the corresponding EIE values, with 𝜉 values
increased from −1.0 to −0.1. From the figure, we can see that when

𝜉 reaches a peak (i.e., 𝜉 > −0.3 when 𝐾 = 1500 and 𝜉 > −0.2
when 𝐾 = 500 or 1000), the number of required iterations increases

rapidly (by 10 to 20 times), but the corresponding EIE gain is in-

significant. Accordingly, we set 𝜉 such that the number of iterations

is maintained at a low level without significantly affecting EIE (e.g.,

𝜉 = −0.3 for region “A”) in the following experiment.

Finally, in Fig. 8(d), we list the number of iterations of the algo-

rithm and the corresponding computation time, when the location

sample size (𝐾) equals 550, 1000, and 1500. Fig. 8(d) shows that

the number of iterations is at most 4 and the highest computation

time is 0.28s. Fig. 8(d) also indicates that 1) the number of itera-

tions is not impacted by 𝐾 significantly, while 2) the computation

time increases with the increase of 𝐾 , as a higher 𝐾 leads to higher

computation load for each subproblem in the lower layer of CG.

Privacy and cost. We next evaluate our approach in terms of both

privacy and traveling cost. We ran the simulation for the 9 regions

separately. Each simulation lasts for 60 minutes (from 00:00:00 to

01:00:00 in the trace). We set the parameter 𝜖 by 1/km for 𝜖-GI
(Definition 3.3). We first show the EIE and the total traveling cost

achieved by our approach (labeled by CG) in different regions in Fig.

9(a)(b), with the comparison of the three benchmarks 2D, VSC, and

Laplace. All 2D, VSC, and Laplace require 𝜖-GI (𝜖 is set by 1/km as

well). The two figures indicate that, with higher density of workers,

CG in A, B, and C achieve higher total traveling cost and lower

EIE than other regions. When the density of workers is higher,

to guarantee the optimality of task assignment, the safe region of

obfuscated location needs to be smaller (see Fig. 5(a)(b)). This, on

average, makes the selected obfuscated location closer to the actual

worker’s location, leading to a lower EIE from the adversary.

Moreover, Fig. 9(a) demonstrates that CG is more effective in pro-

tecting worker location privacy than 2D, VSC, and Laplace. Besides
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Figure 10: Comparison with bounds/idealized scenario.

achieving 𝜖-GI, CG aims to minimize EIE. 𝜖-GI does not always
generate higher EIE, since 𝜖-GI primarily aims to control posterior

information exposure and hence to obfuscate location such that dif-

ferent real locations are hard to differentiate. While, methods based

on EIE tend to select obfuscated location with higher distortion

from the real location. Fig. 9(b) indicates that the total traveling

cost follows CG ≈ VSC < 2D < Laplace. CG can better reduce the

total traveling cost compared with 2D and Laplace because 1) CG

considers the workers’ mobility features over roads, 2) CG derives a

safe region for each obfuscated location by considering the worker

distribution over the region, and 3) the GO function in CG is defined

in a fine-grained location set due to the high-efficiency of CG’s

computation framework (e.g., 2D samples 1 location per 1km×1km

grid, while the average distance between neighbor sample point

in CG is less than 100m). While VSC has slightly lower cost than

CG, VSC facilitates cost-effective task assignment by unnecessarily

minimizing cost estimation error at the expense of privacy.

Fig. 10(a) compares the EIE achieved by CG with a theoretical

upper bound (derived in Theorem 5.2), where the ratio of the upper

bound to the EIE in CG ranges from 1.043 to 1.068 across the dif-

ferent regions. As the optimal solution is no higher than the upper

bound, the approximation ratio of CG is at most 1.068, indicating

that CG approximates the optimal EIE closely.

Even though CG achieves lower cost than 2D, it still cannot guar-

antee the optimality of task assignment as the safe region of each

worker’s obfuscation is derived separately with lag information (as

analyzed in Section 4.1). Hence, it is interesting to check how close

CG can achieve the actual lowest cost. Here, we derive the lowest

traveling cost that can be achieved in the following two scenarios

as the benchmarks: 1) when the optimal traveling cost of workers is

estimated by workers’ actual location in the last round, labeled by

“OPT(lag)”; and 2) when the optimal traveling cost of workers is es-

timated by workers’ actual location in the current round, labeled by

“OPT”. Fig. 10(b) compares the total traveling cost of OPT(lag), OPT,

and CG, and also lists the approximation ratios of CG to OPT(lag)

and OPT, respectively. We have two observations in the figure: 1)

CG in “A”–“C” with higher-density workers, suffer a larger gap

from “OPT(lag)”, since the optimality of task assignment is subject

to change when the worker’s safe region is smaller. 2) In contrast,

the gap between “OPT(lag)” and “OPT” is smaller in “A”–“C”, due to

the higher spatial correlation of workers’ location in these regions,

i.e., workers move relatively more slowly in the downtown area.

6.2 Pilot Study based on Prototype

In addition, we have built a prototype of SC, including the functions

of task request/assignment and geo-obfuscation.We have developed

an Android APP on smartphones based on the Google map API,

where Fig. 11(a)(b) shows the user interface. The APP allows users

(a) Requester (b) Worker

Figure 11: User interface.

0.1

EI
E 

(k
m

) upper bound 
CG

0

2

4

6

To
ta

l tr
av

eli
ng

 
co

st 
(k

m
) CG

optimal

0 5 10 15 20
Group index

0

5

# 
of

 ite
ra

tio
ns

(c)

(b)

(a)

Figure 12: Performance.

to register/log in as a requester/worker. With the APP, a requester

can upload his/her task with the location specified, and a worker

can download a GO matrix from the server. According to the GO

matrix, a worker can select the obfuscated location, and may receive

a task assigned by the server. After then, the worker can accept the

task by clicking “accept” button, and a route will be displayed on

the map to navigate this worker to the task location.

We conduct 20 groups of test, where in each group we deployed

5 workers and 3 tasks (tasks are randomly distributed over the

Rowan campus). We sample 1640 discrete locations over the local

road network. Every time a worker reports the location, the APP

approximates the worker’s current location by its nearest sampled

discrete location (i.e., measured by the Euclidean distance). Fig. 12(a)

and Fig. 12(b) show the EIE and the total traveling cost in different

groups, with the comparison of the EIE’s upper bound 𝜔 and the

actual lowest traveling cost, respectively. Fig. 12(c) lists the number

of iterations in CG in each group. The figure demonstrates that our

approach achieves a near-optimal EIE (i.e., with approximation ratio

up to 1.07) with low computation load (i.e., up to 5 iterations). The

approximation ratio of the traveling cost is relatively high (i.e., up

to 1.171) as approximating each true location to its nearest sampled

location inevitably introduces errors to the task assignment.

7 RELATEDWORK
In this section, we summarize the existing works relevant to ours,

including location privacy criteria and obfuscation based strategies.

Location privacy criteria. The discussion of location privacy cri-

teria can date back to more than ten years ago, when Gruteser and

Grunwald [32] first introduced the notion location 𝑘-anonymity

based on the well-known concept of 𝑘-anonymity [33]. While dif-

ferent from our approach, location 𝑘-anonymity protects users’

privacy by hiding their identities (i.e., it is indistinguishable among

a set of 𝑘 users’ identities given their location reports). Later, two

privacy notions for location obfuscation have been proposed based

on statistical quantification of attack resilience: EIE [22] and GI [10].

Both privacy notions have their own limitations and are comple-

mentary to each other: EIE based approaches assume certain types

of prior information that the adversary may obtain, but require no

restriction on the posterior information gain from the exposure of

obfuscated locations. GI-based approaches limit the posterior in-

formation leakage through a differential privacy based criteria, but

they are susceptible to the inference attacks using prior knowledge.

As such, recent works (e.g., [14]) have proposed to strategically

combine the two notions to double shield users’ location privacy.

Obfuscation based approach. Based on the notions of EIE and GI,

a large body of obfuscation based approaches have been proposed

to achieve either of these two privacy criteria (e.g., [10–12, 22, 34])
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or their combination [14]. As location information error introduced

by geo-obfuscation may lead to quality loss in LBS, a key issue

that has been discussed in obfuscation based approaches is how to

trade-off privacy and QoS. For example, Shokri et al. [22] advocated

an optimal geo-obfuscation mechanism to maximize the EIE given

the quality loss constraint, where quality loss is measured by the

expected distortion from obfuscated location to actual location. Fol-

lowing by the optimization framework in [22], Theodorakopoulos

et al. [34] proposed to maximize EIE with considering the privacy

leakage due to sequential correlation of locations in user’s trajec-

tory. GI has been also adopted by many recent works [15] as a

privacy constraint. For instance, besides proposing the notion of GI,

Andrés et al. [10] developed a location perturbation technique to

achieve GI by adding noise to actual location, drawn from a polar

Laplacian distribution. Given the restriction of GI, Bordenabe et al.

[11] proposed an optimization framework for geo-obfuscation to

minimize the quality loss (i.e., expected distortion between obfus-

cated and true locations) for each single user, while Wang et al. [12]

considered the quality loss generated by all the users (workers) as a

whole and proposed a location privacy-preserving task assignment

algorithm to minimize the total traveling cost.

In a nutshell, the strategies [11, 12, 22, 34] are all based on the

2D model, which is hardly to be applied to SC over road networks.

In addition, although all these techniques follow an optimization

framework like ours, they rely on centralized approaches that have

to deal with 𝑂 (𝐾2) decision variables in LP, which generates ex-

tremely high computation load considering the frequently changed

inputs (e.g., highly dynamic traffic) in the optimization. Moreover,

these approaches apply uniform privacy criteria over the whole tar-

get region without considering the different privacy requirements

due to users’ (workers’) uneven density over the region.” To date,

the strategy closest to ours is our prior work [13], which also obfus-

cates vehicles’ locations by following an LP framework, with the

vehicles’ network-constrained mobility features considered. How-

ever, the LP formulated in [13] is to minimize the cost estimation

error of a single worker. As a result, the derived obfuscation func-

tion in [13] does not consider the distribution (density) of multiple

workers, leading to a uniform privacy level (GI) over the region.

8 CONCLUSIONS

In this paper, we have developed a new geo-obfuscation strategy to

protect workers’ locations over road networks in SC. We modeled

workers’ mobility with considering the road network topology and

dynamic traffic conditions. Our proposed geo-obfuscation approach

follows an LP framework, of which the objective is maximize the

EIE from adversary with the constraints of task assignment cost

and geo-indistinguishability (GI) satisfied. Considering the highly

dynamic inputs of the LP in SC, we devise a time-efficient algorithm

by resorting to DW decomposition. The trace-driven simulation

results have demonstrated the effectiveness of our approach over

the state of the arts in terms of both privacy and QoS.

We see several promising directions for this research. First, our

current work accounts only for homogeneous workers (e.g., either

vehicles or pedestrians), without considering heterogeneous mobile

workers with different mobility features (e.g., a mixture of vehicles

and pedestrians). Also, this work can be extended to general LBS

applications, where service utilities are defined in different ways.
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