
Comparing Application Performance on HPC-based
Hadoop Platforms with Local Storage and

Dedicated Storage
Zhuozhao Li, Haiying Shen

Department of Computer Science
University of Virginia, Charlottesville, 22904

Email: {zl5uq, hs6ms}@virginia.edu

Jeffrey Denton and Walter Ligon
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631
Email: {denton, walt}@clemson.edu

Abstract—Many high-performance computing (HPC) sites ex-
tend their clusters to support Hadoop MapReduce for a variety
of applications. However, HPC cluster differs from Hadoop
cluster on the configurations of storage resources. In the Hadoop
Distributed File System (HDFS), data resides on the compute
nodes, while in the HPC cluster, data is stored on separate nodes
dedicated to storage. Dedicated storage offloads I/O load from
the compute nodes and provides more powerful storage. Local
storage provides better locality and avoids contention for shared
storage resources. To gain an insight of the two platforms, in this
paper, we investigate the performance and resource utilization
of different types (i.e., I/O-intensive, data-intensive and CPU-
intensive) of applications on the HPC-based Hadoop platforms
with local storage and dedicated storage. We find that the I/O-
intensive and data-intensive applications with large input file
size can benefit more from the dedicated storage, while these
applications with small input file size can benefit more from the
local storage. CPU-intensive applications with a large number of
small-size input files benefit more from the local storage, while
these applications with large-size input files benefit approximately
equally from the two platforms. We verify our findings by trace-
driven experiments on different types of jobs from the Facebook
synthesized trace. This work provides guidance on choosing the
best platform to optimize the performance of different types of
applications and reduce system overhead.

I. INTRODUCTION

In this “big data” era, enormous datasets abound in all
facets of our lives and in many realms (e.g., science and
engineering, commerce) and data volume continues to grow at
an astonishing rate. MapReduce [9] is a computing model for
parallel data processing in high-performance cluster for data-
intensive applications. Hadoop [1], as a popular open-source
implementation of MapReduce, has been widely adopted in
many companies and organizations nowadays (e.g., Yahoo,
Facebook, Amazon, Twitter) to process big data and compute
tens to hundreds terabytes of data per day. Through parallel
computing, MapReduce can significantly reduce the time to
complete a job on large datasets by running small tasks on
multiple machines in a large-scale cluster. High performance
computing cluster is an important infrastructure to provide
high-performance and data-parallel processing for applications
utilizing big data. Many HPC sites extend their clusters to

Computing nodes

High speed interconnect

Storage nodes

High speed interconnect

Hadoop Distributed File System

(a) A typical HPC cluster (b) A Hadoop cluster

Fig. 1: A typical HPC and Hadoop cluster [20].

support Hadoop MapReduce in order to meet the needs from
a variety of applications.

However, the Hadoop cluster differs from HPC cluster in the
configuration of storage resources, as shown in Figure 1. In
Hadoop Distributed File System (HDFS), data resides on the
compute nodes, while in HPC cluster, data is usually stored on
separate nodes dedicated to storage. Examples of the dedicated
storage subsystems include OrangeFS [2], PVFS [6] and
Lustre [4]. On HPC cluster, the dedicated storage subsystem
offloads I/O workload from the compute nodes, and its more
powerful storage can provide a better I/O performance in many
cases. In Hadoop, localized storage nodes provide better data
locality and avoid contention for the global shared storage
subsystem. Recently, our institution deployed a new shim layer
on Clemson Palmetto HPC cluster (ranked in the top five
of U.S. public universities) that allows Hadoop MapReduce
to access dedicated storage (i.e., OrangeFS). It also allows
users to configure a Hadoop cluster with HDFS on the HPC
cluster using myHadoop [12]. Figure 2 and Figure 3 show
the two HPC-based Hadoop platforms. For simplicity, in the
following, we use OFS to denote the platform where Hadoop
MapReduce accesses remote OrangeFS, and use HDFS to
denote the platform where Hadoop MapReduce accesses local
storage.

Current MapReduce workload consists of different types
of applications (e.g., I/O-intensive, data-intensive and CPU-
intensive) [7, 8, 15] and different types of applications may
benefit differently from these two platforms [15]. CPU-
intensive applications devote most execution time to com-

putational requirements and typically require small volumes
of data. Data-intensive and I/O-intensive applications both
require large volumes of data and devote most processing time
to I/O. Data-intensive applications contain certain amount of
computation, while I/O-intensive applications do not or have
only few computations [30]. Additionally, data-intensive appli-
cations generate a relatively large amount of intermediate data,
while I/O-intensive applications contain only pure write/read
operations. It is important to gain a deep understanding of
each type of applications on these two platforms, which can
provide guidance to decide the best platform for a given
application to maximize performance and minimize the system
overhead. However, there has been no previous effort that
conducted this investigation despite significant research on
HPC and MapReduce. Thus, in this paper, we mainly focus
on investigating the performance and resource utilization of
different types of applications on these two platforms. We
summarize our contributions below.
(1) We have conducted extensive experiments with different
types of Hadoop applications (i.e., data-intensive, compute-
intensive, I/O-intensive) on the two platforms and measured
their performance and resource utilization.
(2) We have analyzed how different application features (e.g.,
I/O rate, data size) affect the application performance and
system overhead on the two platforms and determine the best
platform for an application with certain features.
(3) We have used a Facebook synthesized trace to conduct
extensive experiments to verify our investigation results of the
platform selection for different types of applications.

Hadoop

MapReduce

HDFS

Hadoop

MapReduce

HDFS

Hadoop

MapReduce

HDFS

Hadoop

MapReduce

HDFS

…
Fig. 2: Typical Hadoop with HDFS local storage (HDFS in short).

Hadoop

MapReduce

OrangeFS

Hadoop

MapReduce

Hadoop

MapReduce

Hadoop

MapReduce

…

Fig. 3: Hadoop with the OrangeFS dedicated storage (OFS in short).

The remainder of this paper is organized as follows. Sec-
tion II explains the two HPC-based Hadoop platforms. Sec-
tion III presents the measurement results of performance for
different types of Hadoop applications. Section IV presents
the experimental results based on the Facebook synthesized
trace to verify our conclusion of platform selection based
on application features. Section VI gives an overview of the
related work. Section VII concludes this paper with remarks
on our future work.

II. TWO HPC-BASED HADOOP PLATFORMS

To facilitate the understanding of application performance
analysis, we first give an overview of Hadoop MapReduce and

then introduce the two different HPC-based Hadoop platforms
with dedicated and local storage, respectively.

Hadoop [1] is an open source implementation of the MapRe-
duce [9]. In Hadoop, HDFS is a very fundamental component.
Figure 2 shows the typical Hadoop with HDFS on local
storage. HDFS is an implementation of the Google File System
[10] used to store both the input and output data for the
map and reduce tasks. HDFS consists of NameNode and
DataNodes. NameNode is a master server that manages the
file system and the access to files by clients. DataNodes
are responsible for serving read and write requests from the
clients. Generally, the TaskTraker and DataNodes run on the
same groups of nodes. JobTracker always tries to schedule
the tasks on the nodes that store the data needed by the
tasks in order to decrease the data movement and bandwidth
utilization. Figure 3 shows the extension of a HPC cluster to
support Hadoop MapReduce, in which compute nodes access
existing HPC dedicated storage system such as OrangeFS
[2, 13, 14]. OrangeFS is an open-source parallel file system
for compute and storage clusters. It stores files as objects (i.e.,
metadata and file data) across multiple servers and accesses
these objects in parallel, which offers better I/O performance.
Each file or directory consists of two or more objects: one
primarily containing file metadata, and the other(s) primarily
containing file data. Each file is partitioned to stripes for
storage. To access a file, the metadata object of the file is firstly
fetched, which provides the information that which servers
store the data objects.

We used Hadoop 1.2.1 in our experiments. We used the
OFS platform on HPC cluster in our institution. In the OFS
platform, no modifications of Hadoop were required, and
no modification of MapReduce jobs are required to utilize
OrangeFS. The key component of this structure is a Java
Native Interface (JNI) to OrangeFS client. This is because
Hadoop MapReduce is written in Java, but OrangeFS’s client
libraries are written in C. The JNI shim allows Java code
to execute functions present in the OrangeFS Direct Client
Interface. We configured the HDFS platform on the same
HPC cluster by ourselves using myHadoop [12], which is
a framework for configuring Hadoop on traditional HPC.
All nodes and OrangeFS servers in the two platforms are
interconnected with 10Gb/s Myrinet.

We used 8 storage servers in the OFS file system, each
of which includes two SSD disks for metadata only and 5
SATA disks for data storage. OFS combines the storage across
the 8 servers. Therefore, there are in total 40 (i.e., 8*5) hard
disks for data storage in the OFS platform. To achieve fair
comparisons between the OFS and HDFS platforms, we chose
40 nodes (i.e., 8*5) as compute nodes in the two platforms
and hence HDFS also has 40 storage disks as OFS does. Each
node has 16GB memory, 8*2.3GHZ CPU capacity, 193GB
storage capacity. Additionally, OFS has its own metadata
servers and we expect that the 40 machines are all used as
datanodes. Therefore, we use an additional machine to serve as
namenode for the HDFS platform. Some detail configurations
of the Hadoop cluster with OFS and HDFS are described as

2

follow. In the OFS platform, input and output data is placed in
dedicated storage servers, while the shuffle data is still stored
in the local storage, since currently Palmetto does not support
to place the shuffle data on the dedicated storages. In the HDFS
platform, all the data is stored in local storage. We set the
replication factor to 3 as default [16, 18]. The block (stripe)
size of both file system is 128MB, which is a recommended
default block size of Hadoop [1]. The total number of map and
reduce slots on each node is set to the number of CPU cores
on each node (a common setting for Hadoop Cluster [8]). For
example, if a node has 4 CPU cores, we can set the numbers
of map and reduce slots to 2, respectively.

III. PERFORMANCE MEASUREMENT OF DIFFERENT
APPLICATIONS ON THE TWO PLATFORMS

In this section, we measure the performance and resource
utilization of different types of applications on the OFS and
HDFS platforms introduced above. Based on the measurement
results, we provide guidance in deciding the best platform
for a given application based on its characteristics. We ran a
number of typical Hadoop applications including TestDFSIO,
Wordcount, Grep, PiEstimator and PageRank on the OFS and
HDFS platforms.

TestDFSIO is an I/O-intensive benchmark, which tests the
I/O performance of the network and file systems. Grep and
Wordcount are data-intensive benchmarks. They count the
matches of a regular expression and the words in the input
files, respectively. If Grep and Wordcount process the same
datasets, then Grep generally does not have as much calcula-
tions as Wordcount does, since Grep only counts the number
of specified regular expression, while Wordcount counts all the
words appeared in the text. We generated the input files from
BigDataBench [26], which is based on the Wikipedia datasets.
For Grep and Wordcount, each file size is fixed to 500MB. In
the measurements, the number of files is up to 4096, which
means the input file size is up to 2TB.

PiEstimator is a typical CPU-intensive job and it uses a
statistical (quasi-Monte Carlo) method to estimate the value
of Pi. PageRank is another CPU-intensive job. We used
the PageRank program from the CMU PEGASUS [3] and
generated the input file from BigDataBench based on Google
web graph datasets. A big difference between PageRank and
PiEstimator is that PageRank has one large-size input file
while PiEstimator has a large number of small input files.

In our measurements, the input data size of I/O-intensive,
data-intensive and CPU-intensive applications reaches terabyte
at most, which is large enough to evaluate the performance of
running big data applications on the two platforms.

We measured different metrics for the performance and
resource utilization for each application including the job
execution time and average map/reduce task completion time
(i.e., the sum of all the map/reduce task completion time
divided by the number of map/reduce tasks). All the metric
information is parsed out directly from the Hadoop logs. Note
that in Hadoop, the reduce tasks include data shuffling from
map tasks to reduce tasks. Hadoop always tries to overlap

this data shuffling with the map tasks and let the shuffling
start right after some map tasks are completed. Therefore, the
average reduce task completion time contains the shuffling
time, which results in long average reduce task completion
time. To monitor the resource utilization [23, 28], we used
SYSSTAT utilities mpstat to monitor the CPU time every
second. We developed a bash script using ifconfig to monitor
bandwidth utilization every second. Note that these tools
introduce a low overhead during measurement [27].

A. I/O-Intensive Applications

In this section, we measure the performance and resource
utilization of TestDFSIO (I/O-intensive). TestDFSIO provides
two tests: write and read. In the write test, each map task
writes a file, and in the read test, each map task reads a file and
hence the number of mappers equals the number of input files.
Therefore, more input files mean more mappers located in
one node, which leads to higher competition on I/O accessing
the local disk in one node. In this experiment, we varied the
number of input files and set file size to 1GB. We first intro-
duce the metrics we measured. The execution time of a job is
calculated by the ending time of the job minus its starting time.
In TestDFSIO, the reduce task only collects the statistics of the
map tasks, such as the number of completed tasks, execution
time and I/O rate, so the throughput only occurs in the map
tasks. Therefore, we define throughput as the total read/write
file size divided by the map phase duration time. Each file’s I/O
rate is calculated by the file size divided by its corresponding
map task time. We define I/O rate deviation as the standard
deviation of I/O rates of all files. This metric reflects the
stability of I/O performance for each file since I/O congestion
leads to instability and hence a large deviation. Throughput
and I/O rate deviation reflect the storage I/O performance.

Figures 4(a), 4(b), 4(c) show the execution time, throughput
and I/O rate deviation of OFS and HDFS in the write test
versus the number of input files, respectively. Figures 5(a),
5(b), 5(c) show the execution time, throughput and I/O rate
deviation of OFS and HDFS in the read test versus the number
of input files, respectively. We see that in both read and write
tests, when the number of files is no greater than five, OFS
leads to slightly higher execution time and lower throughput
than HDFS. However, when the number of files becomes
larger, OFS needs much less execution time and has much
higher throughput than HDFS. Figure 4(c) indicates that the
I/O rate deviation has an opposite pattern of throughput. When
the number of files is no greater than five, the deviation of
HDFS is smaller than OFS; when it is more than five, the
deviation of OFS is smaller than HDFS. Figures 7(a) and 7(b)
show the average map and reduce task completion time in
the write test versus the number of input files. We see that the
results are consistent with the execution time and throughput in
Figures 4(a) and 4(b). Figures 7(c) and 7(d) show the average
map and reduce task completion time in the read test, which
are also consistent with the execution time and throughput in
Figures 5(a) and 5(b).

3

1

10

100

1000

10000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

E
x
e
c
u
ti
o
n

 t
im

e
 (
s
)

The number of files (1 GB)

OFS

HDFS

(a) Execution time.

0

50

100

150

200

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

T
h
ro
u
g
h
p
u
t
(M

b
/
s
)

The number of files (1 GB)

OFS HDFS

(b) Throughput.

0

0.2

0.4

0.6

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

I/
O

 r
a
te

 d
e
v
ia
ti
o
n

(M
b
/
s
)

The number of files (1 GB)

OFS HDFS

(c) I/O rate deviation.

Fig. 4: Performance of I/O-intensive application TestDFSIO write test.

1

10

100

1000

10000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

E
x
e
c
u
t
io
n

 t
im

e
 (
s
)

The number of files (1 GB)

OFS

HDFS

(a) Execution time.

0

50

100

150

200

250

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

T
h
ro
u
g
h
p
u
t
(M

b
/
s
)

The number of files (1 GB)

OFS HDFS

(b) Throughput.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

I/
O

 r
a
t
e

 d
e
v
ia
t
io
n

(M
b
/
s
)

The number of files (1 GB)

OFS HDFS

(c) I/O rate deviation.

Fig. 5: Performance of I/O-intensive application TestDFSIO read test.

1

10

100

1000

10000

100000

1 3 5

1
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

C
P
U

 t
im

e
 (
s
)

The number of files (1GB)

OFS!usr OFS!IOwait HDFS!usr HDFS!IOwait

Fig. 6: CPU time of I/O-intensive
application TestDFSIO.

1

10

100

1000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0W

r
it
e

 t
e
s
t
a
v
e
ra
g
e

m
a
p

 t
a
s
k

 c
o
m
p
le
ti
o
n

ti
m
e

 (
s
)

The number of files (1 GB)

OFS!w!map

HDFS!w!map

(a) Write test average map task comple-
tion time.

1

10

100

1000

10000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

W
r
it
e

 t
e
s
t
 a
v
e
r
a
g
e

r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
t
io
n

 t
im

e
(s
)

The number of files (1 GB)

OFS!w!reduce

HDFS!w!reduce

(b) Write test average reduce task com-
pletion time.

1

10

100

1000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0R
e
a
d

 t
e
s
t
 a
v
e
ra
g
e

m
a
p

 t
a
s
k

 c
o
m
p
le
t
io
n

t
im

e
(s
)

The number of files (1 GB)

OFS!r!map

HDFS!r!map

(c) Read test average map task comple-
tion time.

1

10

100

1000

10000

1 3 5

1
0

3
0

5
0

1
0
0

3
0
0

5
0
0

8
0
0

1
0
0
0

3
0
0
0

R
e
a
d

 t
e
s
t
 a
v
e
r
a
g
e

r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
t
io
n

 t
im

e
 (
s
)

The number of files (1 GB)

OFS!r!reduce

HDFS!r!reduce

(d) Read test average reduce task com-
pletion time.

Fig. 7: Average task completion time of I/O-intensive application TestDFSIO write/read test.

In order to find out the reasons for the performance differ-
ences on the two platforms shown in the above figures, we
measured the user-level and I/O-waiting CPU utilizations on
both platforms. The user-level CPU time means the CPU time
used for executing the user-level application, while the I/O-
waiting CPU time is the time period that the CPU(s) are idle
during which the system has an outstanding I/O request.

Figure 6 shows the user-level and I/O waiting CPU times
in both write and read tests on OFS and HDFS. The figure
indicates that the user-level CPU times are approximately the
same on both platforms. It means that except I/O-waiting,
TestDFSIO consumes similar CPU time on both platforms,
which implies that the major factor that affects the CPU time
difference on both platforms is the I/O-waiting CPU time. On
HDFS, when the number of files increases, the I/O-waiting
CPU time becomes extremely high, which almost occupies
more than 70% of the total CPU time (i.e., user-level+I/O-
waiting). On the contrary, the I/O-waiting CPU time on OFS
is much smaller, which constitutes 0.1%-6% of the I/O-waiting
CPU time of HDFS. It indicates that the applications spend
much longer CPU time on waiting the I/O completion on
HDFS, which results in higher average map task completion

time. This is because the local disks in HDFS are slow
and cannot quickly handle large I/O amounts. In OFS, the
OrangeFS dedicated storage offloads I/O operations from the
compute nodes and its more powerful storage and OrangeFS
infrastructure can provide better I/O performance than HDFS.
However, for a small amount of data size (1-5 files), the I/O-
waiting CPU time on OFS is slightly higher than HDFS due to
the network latency (almost constant) necessary for the remote
communication regardless of the data size. With HDFS, the
tasks are more likely to be data local, which can eliminate
possible network latency. However, with OFS, the tasks always
need to use the network to read/write the input/output data.
Since the execution time is relatively small when the data size
is small, the network latency affects the performance greatly.
On the other hand, the network latency can be neglected when
the data size is large, since the execution time is also large.

From the above experimental results, we can make the
conclusions for I/O-intensive applications.
(1) I/O performance is a major factor for execution time and
throughput.
(2) To achieve better I/O performance, if a job has a large
amount of data size to read/write, OFS is a better platform;

4

0

1000

2000

3000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6E
x
e
c
u
ti
o
n

 t
im

e
(s
)

The number of files (500 MB)

OFS HDFS

0

50

100

1 2 4 8

1
6

3
2

6
4

1
2
8

(a) Execution time.

0

5

10

15

20

25

30

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6A
v
e
r
a
g
e

 m
a
p

 t
a
s
k

c
o
m
p
le
t
io
n

 t
im

e
 (
s
)

The number of files (500 MB)

OFS!map HDFS!map

(b) Average map task completion time.

0

200

400

1 2 4 8

1
6

3
2

6
4

1
2
8

0

1000

2000

3000

4000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

A
v
e
ra
g
e

 r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
ti
o
n

 t
im

e
 (
s
)

The number of files (500 MB)

OFS!reduce HDFS!reduce

(c) Average reduce task completion
time.

0.1

1

10

100

1000

10000

100000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

C
P
U

 t
im

e
 (
s
)

The number of files (500MB)

OFS!usr OFS!IOwait HDFS!usr HDFS!IOwait

(d) The CPU time.

Fig. 8: Performance of data-intensive application Grep.

0

2000

4000

6000

8000

10000

12000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6E
x
e
c
u
ti
o
n

 t
im

e
 (
s
)

The number of files (500 MB)

OFS HDFS

0

200

400

1 2 4 8

1
6

3
2

6
4

1
2
8

(a) Execution time.

0

20

40

60

80

100

120

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

A
v
e
r
a
g
e

 m
a
p

 t
a
s
k

c
o
m
p
le
t
io
n

 t
im

e
 (
s
)

The number of files (500 MB)

OFS!map HDFS!map

(b) Average map task completion time.

0

2000

4000

6000

8000

10000

12000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6A
v
e
ra
g
e

 r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
t
io
n

 t
im

e
 (
s
)

The number of files (500 MB)

OFS!reduce HDFS!reduce

0

200

400

1 2 4 8

1
6

3
2

6
4

1
2
8

(c) Average reduce task completion
time.

0.1

10

1000

100000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

C
P
U

 t
im

e
 (
s
)

The number of files (500MB)

OFS!usr OFS!IOwait HDFS!usr HDFS!IOwait

(d) The CPU time.

Fig. 9: Performance of data-intensive application Wordcount.

if a job has a very small amount of data size to read/write,
HDFS is a better platform to avoid network latency.

B. Data-Intensive Applications

Data-intensive applications need to process a large amount
of data. This kind of jobs devote most of the processing time
on I/O and data manipulations, which are quite similar as I/O-
intensive applications. However, data-intensive applications
contain certain amount of calculations, while I/O-intensive ap-
plications have no or only a few computations. We measure the
performance and resource utilization of Grep and Wordcount
data-intensive applications in this section. For both Grep and
Wordcount, recall that the size of each file we generated is
500MB.

Figures 8(a) and 9(a) show the job execution time versus
the number of input files for Grep and Wordcount, respectively.
We see that when the number of input files is relatively small
(1-64 input files), Grep and Wordcount do not have much
difference on execution time between HDFS and OFS. As the
number of input files becomes greater, the execution time of
both applications is shorter on OFS than on HDFS. This result
is consistent with the results of the I/O-intensive jobs due to
the same reasons, since data-intensive jobs also involve a large
amount of I/O requests.

We calculated the execution time difference between OFS
and HDFS by |HDFS.exe−OFS.exe|

HDFS.exe . This metric value is
2%-30% for Grep and is 1%-10% for Wordcount, which are
smaller than this metric value for TestDFSIO (20%-70%).
Also, this metric for Wordcount is smaller than Grep. This
is because data-intensive Grep and Wordcount contain more
computations than I/O-intensive TestDFSIO and Wordcount
contains even more calculations than Grep since Wordcount
counts all the words appeared in a file while Grep only
counts the matches of regular expression in the file. As

computation also contributes to the execution time, when
there are more computations, the I/O performance plays a
less important role in determining the execution time and the
performance difference between the two platforms becomes
smaller. Figures 8(b) and 8(c) show the average map and
reduce task completion time versus the number of input files
for Grep. We see that these two figures match the pattern
of execution time of Grep. Similarly, Figures 9(b) and 9(c),
which show the average map and reduce task completion time
versus the number of input files for Wordcount, also have the
same pattern as the execution time result of Wordcount.

Figures 8(d) and 9(d) show user-level CPU time and I/O-
waiting CPU time for Grep and Wordcount on both platforms.
We see that when the number of files is large (greater than
64), I/O-waiting CPU time with HDFS is significant, which
occupies 3%-19% of total CPU time for Grep and 0.8% -
5% for Wordcount. On the other hand, I/O-waiting CPU time
with OFS occupies 0.1%-0.3% of the total CPU time for Grep
and 0.08%-0.1% for Wordcount. The user-level CPU times are
nearly the same in both HDFS and OFS for each application,
which means each application’s computations take nearly the
same CPU times in both platforms. The data-intensive jobs
involve a large amount of I/O operations on the data, and hence
their performance is influenced by the I/O performance of the
file systems. Since OFS has better I/O performance when the
total input data size is large, it produces less I/O-waiting CPU
time.

We also notice that for a given number of input files,
Grep and Wordcount have similar I/O-waiting CPU time on
each platform. However, Wordcount has much higher user-
level CPU time than Grep since Wordcount contains more
computations than Grep as aforementioned previously. On the
other hand, the user-level CPU time of Grep is much higher
than TestDFSIO at the same input data size (file size * the

5

1E+06

1E+08

1E+10

1E+12

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6T
o
t
a
l
t
r
a
n
s
m
it
t
e
d

d
a
t
a

 s
iz
e

(
b
y
t
e
s
)

The number of files (500 MB)

OFS!RX OFS!TX HDFS!RX HDFS!TX

Fig. 10: Total transmitted data size of
data-intensive Grep.

1E+06

1E+08

1E+10

1E+12

1E+14

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6T
o
t
a
l
t
r
a
n
s
m
it
t
e
d

d
a
t
a

 s
iz
e

 (
b
y
t
e
s
)

The number of files (500 MB)

OFS!RX OFS!TX HDFS!RX HDFS!TX

Fig. 11: Total transmitted data size of
data-intensive Wordcount.

number of files) because Grep involves certain computations
besides I/O requests while TestDFSIO only has I/O requests.
Consequently, the I/O-waiting CPU time of Wordcount oc-
cupies less percentage of total CPU time than Grep, which
makes the delay caused by I/O performance difference less
significant for Wordcount. Hence, the execution time difference
between OFS and HDFS for Wordcount is not as large as the
difference of Grep. Similarly, the execution time difference
between OFS and HDFS for Grep and Wordcount is not as
large as TestDFSIO. From these results, we can conclude that
the more computations an application has, the less influence
from the I/O performance on the execution time and the less
performance difference between the two platforms.

Figures 10 and 11 show the total transmitted data size
of all the compute nodes for Grep and Wordcount on both
platforms, respectively. The received data (RX) of the nodes
contains input, shuffle and output data that all compute nodes
read from other nodes. The transmitted data (TX) contains
input files, shuffle data, output data transmitted out by all
compute nodes, and also task status that is needed to report
to JobTracker. We see that for both applications on HDFS,
the transmitted data size is much smaller than the input data
size. It indicates that Hadoop can achieve very high data
locality to avoid the data movement between nodes on HDFS.
Therefore, the total transmitted data size on HDFS is small.
On the other hand, on OFS, the data must be input and output
to remote storage. The input data for map tasks on OFS is
always needed to read through network. Therefore, the size
of received data of all the nodes is very close to the input
data size. For the output data, it is also stored in the remote
storage through network. Then, the size of transmitted data of
all the nodes is close to the output data size of reduce tasks.
The transmitted data size in OFS is slightly smaller than that
in HDFS. This is because in OFS, the nodes only need to
send output and shuffle data, while the nodes in HDFS also
need to send the input data blocks needed by the mappers
allocated on other nodes besides output and shuffle data. The
result implies that a dedicated storage can offload I/O load
from the compute nodes to avoid the I/O-waiting CPU time.

We can make the conclusions for data-intensive jobs.
(1) If an application has a large input data size, OFS is a
better platform to achieve better I/O performance and reduce
the execution time.
(2) If an application has a small input data size, HDFS is a
better platform to avoid network latency and reduce the total

transmitted data size.
(3) The more computations an application has, the less
influence from the I/O performance on the execution time and
the less performance difference between the two platforms.
(4) Since the I/O-waiting CPU time occupies less percentage
of total CPU time for data-intensive applications, the perfor-
mance difference between OFS and HDFS for data-intensive
applications is not as large as I/O-intensive applications.

C. CPU-Intensive Applications
In this section, we first measure the performance and

resource utilization of the PiEstimator application. It has a
large number of small-size input files and each file is processed
by one mapper. Each file in PiEstimator has around 4KB.
Then, we measure the PageRank application, which has only
one large-size input file. The file is processed by filesize

blocksize
mappers. For both applications, the input files are stored into
the local storage in HDFS and the dedicated storage in OFS,
then the applications start to read files and process the files.
PiEstimator Figure 12(a) shows the execution time of PiEs-
timator versus the number of input files on OFS and HDFS.
HDFS always has a shorter execution time than OFS regardless
of the number of input files. The execution time difference
between HDFS and OFS is not significant when the number
of input files is small, and it becomes greater when the number
of input files increases.

Recall that each file is very small (4KB) in PiEstimator.
In OFS, when OrangeFS reads/writes a file, the setup of the
network communication from the client to the remote servers
must occur. Therefore, each file read generates a certain
network latency even though it has a small size. More small-
size file reads from the dedicated storage through network lead
to higher total file access delay. In HDFS, files are read directly
from the local disk without network connection latency and
the files’ small size makes the I/O congestion less likely to
occur. As a result, the application needs longer time to fetch
small-size files in OFS than in HDFS. Therefore, when the file
size is small, the network latency for each file read offsets the
better I/O performance of the dedicated storage. As shown in
the pervious experiments, if the file size is large, the network
communication setup time is negligible compared to the total
data transmission time, and then the better I/O performance
of the dedicated storage in OFS can be clearly shown.

Figure 12(d) shows the CPU time of PiEstimator on two
platforms on user level and I/O-waiting. We see that though
PiEstimator runs the same computing task in both platforms,
it consumes much more user-level CPU time on OFS than
on HDFS. Also, the increase rate of user-level CPU time on
OFS is much faster than that on HDFS as the number of input
files increases. This is because when OrangeFS reads/writes
a file, the setup of communication with the remote servers is
all conducted by the OrangeFS client library which runs in
user space whereas the HDFS uses kernel virtual file system
(VFS). For communications of large-size files in the previous
TestDFSIO experiment, the CPU time used to set up the
communications is negligible compared to the network latency

6

1

10

100

1000

10000
E
x
e
c
u
ti
o
n

 t
im

e
 (
s
)

The number of files (4KB)

OFS

HDFS

(a) Execution time.

0

1

2

3

4

5

A
v
e
ra
g
e

 m
a
p

 t
a
s
k

c
o
m
p
le
ti
o
n

 t
im

e
 (
s
)

The number of files (4KB)

OFS!map HDFS!map

(b) Average map task completion time.

1

10

100

1000

10000

A
v
e
ra
g
e

 r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
ti
o
n

 t
im

e
 (
s
)

The number of files (4KB)

OFS!reduce

HDFS!reduce

(c) Average reduce task completion
time.

0.1

1

10

100

1000

10000

C
P
U

 t
im

e
 (
s
)

The number of files (4KB)

OFS!usr OFS!IOwait HDFS!usr HDFS!IOwait

(d) The CPU time.

Fig. 12: Performance of CPU-intensive application PiEstimator.

1

10

100

1000

10000

21 22 23 24 25 26

E
x
e
c
u
ti
o
n

 t
im

e
 (
s
)

The number of iterations

OFS

HDFS

(a) Execution time.

0

10

20

30

40

50

60

21 22 23 24 25 26

A
v
e
ra
g
e

 m
a
p

 t
a
s
k

c
o
m
p
le
ti
o
n

 t
im

e
 (
s
)

The number of iterations

OFS!map HDFS!map

(b) Average map task completion time.

1

10

100

1000

21 22 23 24 25 26

A
v
e
ra
g
e

 r
e
d
u
c
e

 t
a
s
k

c
o
m
p
le
ti
o
n

 t
im

e
 (
s
)

The number of iterations

OFS!reduce

HDFS!reduce

(c) Average reduce task completion
time.

1

10

100

1000

10000

100000

21 22 23 24 25 26

C
P
U

 t
im

e
 (
s
)

The number of iterations

OFS!usr OFS!IOwait HDFS!usr HDFS!IOwait

(d) The CPU time.

Fig. 13: Performance of CPU-intensive application PageRank.

for transferring large-size files. However, for a large number
of small files, OrangeFS client library needs to set up a large
number of communications. The CPU time is not negligible
compared to the small network latency for transferring small-
size files. More small-size file reads from remote storage
generates a much larger total CPU time, which degrades the
performance of PiEstimator jobs on OFS. We also see that the
OFS and HDFS produce similar I/O waiting CPU time, which
are both quite small. On both platforms, the user-level CPU
time occupies more than 99% of the total CPU time, while
I/O-waiting CPU time is almost negligible. It is because this
application is CPU-intensive and the file size is small, CPU
is less likely to be idle to wait for the I/O requests due to
outstanding I/O in both platforms.

Figures 12(b) and 12(c) show the map and reduce task
duration of PiEstimator, respectively. We see that PiEstimator
always has higher average map and reduce task completion
time on OFS than on HDFS, especially when there are many
input files. This is because of a certain latency for network
communication even if the file size is small. Many times of
network communication to access small-size data from the
remove storage lead to a long total network latency. On the
other hand, on HDFS, small-size file read generates shorter
access time in the local storage, hence leads to short average
map and reduce task completion time. For Hadoop with HDFS
configurations, we use an additional machine to serve as
namenode only. This is because OFS itself has own metadata
servers. To achieve fair comparisons between HDFS and OFS,
we expect the 8 machines are purely datanodes, otherwise,
one of the 8 machines will have to act as both namenode and
datanode, which probably degrades the performance of HDFS
and leads to unfair results.

TABLE I: I/O-intensive TestDFSIO read/write test of ten thousands 1MB files.

Platforms
read

execution
time

write
execution

time

CPU-
usr

CPU-
IOwait RX TX

OFS 1380s 1182s 13190s 662s 29 GB 10 GB
HDFS 194s 211s 798s 247s 1 GB 1 GB

Figure 14 shows the total transmitted data size of all the
nodes for PiEstimator on both platforms. We see that with
OFS, the nodes have a large amount of received data, which
is much larger than the size of the input files. This is because
of the communication overhead between the nodes and the
remote storage servers when the nodes try to connect with
the dedicated storage. The overhead may include the package
header added to user-transmitted data package for carrying
routing information and error correcting and operational in-
structions. The transmitted data size of all the nodes with OFS
is slightly smaller than with HDFS due to the same reason in
Figures 10 and 11.

In order to confirm the larger user-level CPU time of OFS
than HDFS in the case of a large number of small-size files,
we conducted another TestDFSIO read/write experiment for
ten thousands 1MB files on both platforms. We set the file size
to 1MB, the smallest available file size for TestDFSIO. The
results are shown in Table I. We see that the execution time
of write/read test on OFS is much greater than on HDFS. It
is caused by the same reason as mentioned above. TestDFSIO
consumes much more user-level CPU time to transfer a large
number of small-size files on OFS than on HDFS. Both the
size of received data (RX) and transmitted data (TX) on HDFS
is less than on OFS. This is because HDFS benefits from data
locality, which can help HDFS avoid too many data movement
through network while OFS produces extra communication
overhead for each small-size file. Unlike the previous experi-
ments, the TX value of OFS is much larger than HDFS because

7

1E+03

1E+06

1E+09

1E+12

1
0

5
0

1
0
0

5
0
0

8
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0T
o
ta
l
tr
a
n
s
m
it
te
d

d
a
ta

 s
iz
e

 (
b
y
te
s
)

The number of files (4KB)

OFS!RX OFS!TX HDFS!RX HDFS!TX

Fig. 14: Total transmitted data size of
CPU-intensive PiEstimator.

1E+06

1E+08

1E+10

1E+12

21 22 23 24 25 26

T
o
ta
l
tr
a
n
s
m
it
te
d

d
a
ta

 s
iz
e

 (
b
y
te
s
)

The number of iterations

OFS!RX OFS!TX HDFS!RX HDFS!TX

Fig. 15: Total transmitted data size of
CPU-intensive PageRank.

there are considerably more write operations in TestDFSIO.
The table also indicates that the nodes have a greater amount of
received data than the input data size (10GB) on OFS because
of communication overhead. Actually, neither HDFS nor OFS
are designed for small files. If we must deal with applications
with a large number of small-size files, HDFS with local
storage is a better platform than OFS with dedicated storage.
PageRank We then measure the performance of PageRank,
which has one file with a much larger size. Based on the
specified number of iterations n, we generated a file of edges
between 2n webpages. One edge means one webpage is linked
to another webpage. The input file is stored in the first compute
node in HDFS. The input data of PageRank is partitioned
to 128MB-size blocks and each mapper processes one block.
Figures 13(a), 13(b) and 13(c) show the execution time, the
average map and reduce task completion time of PageRank
versus different number of iterations on both platforms. We
see that both platforms generate similar experimental results.
This is because for the applications that contain a large amount
of computations, the performance mainly depends on the CPU
resources of the nodes. In both platforms, the CPU resources
are from the same nodes despite the different storages.

Figure 13(d) shows that the two platforms generate similar
user-level CPU time and I/O-waiting CPU time in different
number of iterations, which indicates that there is not any
difference between OFS and HDFS for PageRank. Recall that
PageRank contains a large amount of computations, which is
mainly related to CPU computing capability rather than the
storage and the two platforms use the same compute nodes.
We also see that the user-level CPU time on two platforms is
very high, while the I/O-waiting CPU time is comparatively
very low (0.3%-1%), which indicates that there is little CPU
time spent on waiting the I/O requests although the input
data size is large. The data size of input can reach 40GB
when the number of iterations increases. However, it does not
consume as much CPU time on waiting the I/O requests as
the data-intensive applications. This is because the recursively
computing dominates the CPU time of PageRank and each
input data needs a large amount of recursive computation.
It makes the I/O performance, which affects the I/O-waiting
CPU time, play a much less significant role in determining the
application performance in PageRank. Figure 15 shows the
total transmitted data size on all the nodes on both platforms.
We see that the amount of received and transmitted data is
close to the input and output on both platforms.

From the above experimental results, we can make the
conclusions for CPU-intensive applications.
(1) Although CPU-intensive applications can contain large-
size input files, a large amount of calculations dominate the
CPU time for this kind of applications, which makes the I/O
performance play a much less important role in determining
the application performance.
(2) If CPU-intensive applications have a large number of small-
size input files, HDFS is better platform that can avoid high
user-level CPU time for communication setup with the remote
storage in OFS.
(3) If CPU-intensive applications have large-size input files,
both HDFS and OFS produce comparable performance.

IV. PERFORMANCE EVALUATION

In this section, we verify our conclusions on the platform
selection for different types of applications by using workload
from 2009 Facebook synthesized trace [8]. In the experiments,
we used 40 compute nodes and 40 storage nodes. We selected
the first 1500 jobs from the total 6638 jobs in the trace and
ran the jobs in both OFS and HDFS platforms to measure the
performance. Since the trace is collected from 600-machine
cluster and we have only 40 machines, we shrank the data
size by a factor of 5 based on the instructions of the workload
[8].

According to the application analysis, we approximately
characterize the types of jobs based on input/shuffle/output
data size. I/O-intensive jobs include write and read jobs. The
write jobs have large output size but small input and shuffle
size, while the read jobs have large input size and small shuffle
and output size. Data-intensive applications have large input
and shuffle size (in the same order), while the output size can
be either large or small. From the 1500 jobs, we picked out the
jobs with input size greater than 1GB and shuffle and output
size smaller than 100MB as I/O intensive read jobs. For I/O-
intensive write jobs, the input and shuffle sizes are smaller than
100MB and output size is greater than 1GB. For data-intensive
jobs, the input size is greater than 1GB, the shuffle size has a
similar order to input, and output size is not limited. We then
approximately considered the remaining jobs as CPU-intensive
jobs and classified them to a small-size file group with each
file having less than 256MB and non-small-size file group.

Figure 16(a) shows the execution time distribution of I/O-
intensive write jobs. It shows that the performance of write
jobs are always better on OFS than on HDFS since the write
jobs from the trace all have large sizes. Figures 16(b) and
16(c) show the execution time distribution of read jobs and
data-intensive jobs, respectively. We see that the CDF of the
execution time of the read jobs and data-intensive jobs have
similar patterns. When the execution time is small (< 100s),
which indicates the input size is small, the execution time
on HDFS has a broader distribution than on OFS. When the
execution time is large, on the contrary, the execution time
has a broader distribution on OFS than on HDFS. The result
means that when the input size is small, HDFS generates
smaller execution time, while when the input size is larger,

8

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800

C
D
F

Execution time (s)

OFS

HDFS

(a) I/O-intensive write.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

C
D
F

Execution time (s)

OFS

HDFS

(b) I/O-intensive read.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

C
D
F

Execution time (s)

OFS

HDFS

(c) Data-intensive jobs.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150

C
D
F

Execution time (s)

OFS

HDFS

(d) CPU-intensive jobs with
small-size files.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

C
D
F

Execution time (s)

OFS

HDFS

(e) CPU-intensive jobs with
non-small size files.

Fig. 16: Execution time distribution for different jobs in trace-driven experiment.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

C
D
F

Throughput (Mb/s)

OFS

HDFS

(a) Throughput of write jobs.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10

C
D
F

Throughput (Mb/s)

OFS

HDFS

(b) Throughput of read jobs.
Fig. 17: I/O intensive jobs in trace-driven experiment.

OFS generates smaller execution time. It is consistent with
our conclusions that for I/O-intensive and data-intensive jobs
with small input size, it is better to use HDFS, while OFS is
the best choice when the input size is large.

Figures 16(d) and 16(e) show the execution time distribution
of small-size file group and non-small-size file group in the
CPU-intensive jobs, respectively. In Figure 16(d), we see that
the execution time on HDFS has a broader distribution than
on OFS, which indicates that HDFS is a better platform
for CPU-intensive jobs with small-size files to achieve high
performance. In Figure 16(e), the execution time on HDFS has
less broader distribution, which means the benefits of HDFS
diminish for larger size file jobs and both HDFS and OFS
can be the choice of these jobs. The results are consistent
with our investigation results for CPU-intensive jobs. We see
that at the tail of the curves, the distributions of OFS and
HDFS are overlapped. It means that for CPU-intensive jobs,
in which the I/O performance does not play an important role
in the application, since the compute nodes are the same,
the performance in the two platforms is similar. Note that
there is some overlap at the tails of the curves for the two
platforms. This is because the jobs appeared at the tail may
be the boundary between CPU-intensive and I/O-intensive jobs
or data-intensive jobs.

Figures 17(a) and 17(b) show the throughput of I/O inten-
sive write and read jobs, respectively. We see that HDFS has
broader write and read throughput distribution than OFS. It
indicates that OFS has higher throughput and hence higher
I/O performance than HDFS, which is consistent with our
analysis conclusion for I/O-intensive jobs with large input
size. The read throughput distributions of OFS and HDFS are
overlapped at the tail. When the read jobs input size decreases,
the throughput on HDFS becomes higher than on OFS as
stated before, leading to the overlapped tail. The throughput
distribution and execution time distribution for the write jobs

in Figure 17(a) do not have this pattern because there may not
exist small-size write jobs in our I/O-intensive write job group
from the trace.

In summary, our trace-driven experiments verify our inves-
tigation results on how to select the best platform for different
applications.

V. DISCUSSIONS

In summary, our performance measurements in this paper
aim to help the users to determine which platform should be
used to run the applications to achieve the best performance.
However, our performance measurements were conducted on
only one HPC cluster. We do not expect the specific results
can be generalized to any HPC clusters. We aim to provide a
basic idea that configuring Hadoop with a remote file system
is feasible for some types of applications. The users from
different HPC clusters may utilize the metrics in this paper
to measure which applications are better to run on Hadoop
with remote file system on their HPC clusters. Based on the
measurement results, users are able to select the best platform
to run the applications to achieve best performance. For
example, when a data-intensive job with very large input data
size is submitted, based on our conclusions, the job should
run on the Hadoop with remote file system in a HPC cluster.

VI. RELATED WORK

In both MapReduce and HPC cluster, the underlying cluster
file system is a crucial component. Much recent research has
focused on the integration of Hadoop and HPC cluster [24],
particularly in the use of the HPC file system in lieu of HDFS
in the Hadoop framework, e.g., [5, 19, 25]. Researchers also
tried to seek for substitution for HDFS. Examples of modern
distributed file systems include GoogleFS [10], PVFS [6] and
OrangeFS [29]. Tantisiriroj et al. [25] tried to demonstrate
how PVFS can replace HDFS in the Hadoop framework. Later
works such as GPFS [5] and Lustre [4] also demonstrate
the using of their respective file system with Hadoop. Our
work differs from the above works in that we investigates the
performance of HPC-based Hadoop platforms with dedicated
storage and local storage, respectively. Our results can give
guidance on which applications are more suitable to run on
a Hadoop platform with a dedicated storage substitution for
HDFS.

Many efforts have been devoted to characterizing the work-
loads on MapReduce and cloud platforms [17, 22]. Chen et al.

9

[8] analyzed and compared two production MapReduce traces
from Yahoo and Facebook in order to develop a vocabulary
for describing MapReduce workloads. Their another work [7]
characterized new MapReduce workloads, which are driven in
part by interactive analysis and with heavy use of query-like
programming frameworks such as Hive on top of MapReduce.
Ren et al. [21] characterized a workload from Taobao at the
granularity of job and task, respectively, which provides an
understanding of the performance and the job characteristics
of Hadoop in the production environment. Kavulya et al. [11]
analyzed the characteristics of the workload based on MapRe-
duce logs from the M45 supercomputing cluster. Although
these studies instruct us on how to study the applications’ fea-
tures, performance and resource utilization, we have novelty
that we study on the different storage platform. In addition to
workload analysis, we have also investigated whether storing
data in dedicated storage or local storage can achieve better
performance. Moreover, we intuitively guide the clients to
select the best storage structures to achieve better performance.
It is useful for guiding both the cloud provider and clients to
maximize performance and minimize the system consumption.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a thorough measurement
analysis of application performance and resource utilization
on the two HPC-based Hadoop platforms: Hadoop configured
with a local storage and Hadoop configured with a dedicated
storage. We did our measurements and evaluations using
different types of MapReduce applications: I/O-intensive, data-
intensive and CPU-intensive applications for the analysis.
We have concluded from the measurements which storage
platform can benefit each type of applications with certain
characteristics (e.g., input file size, I/O workload, CPU work-
load). We have used the Facebook synthesized trace workloads
to verify our measurement conclusions. We demonstrated
the validations of our measurement analysis, which provides
guidance in determining which platform can best maximize
the performance and reduce system overhead for a given
application to the users. This study can also help HPC site
staff who wishes to extend HPC capabilities with Hadoop by
mixing workloads and then select a file system in the two file
systems to allocate workloads accordingly. In the future, we
plan to work on studying how to optimally arrange data (e.g.,
shuffle data, input data) placement between local storage and
dedicated storage to improve application performance.

ACKNOWLEDGEMENTS

We would like to thank Mr. Matthew Cook for his in-
sightful comments. This research was supported in part by
U.S. NSF grants NSF-1404981, IIS-1354123, CNS-1254006,
IBM Faculty Award 5501145 and Microsoft Research Faculty
Fellowship 8300751.

REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.
[2] OrangeFS. http://www.orangefs.org.
[3] PEGASUS. http://www.cs.cmu.edu/∼pegasus/.

[4] Using Lustre with Apache Hadoop. http://wiki.lustre.org/images/1/1b/
Hadoop wp v0.4.2.pdf.

[5] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari. Cloud analytics: Do we really need to reinvent
the storage stack? In Proc. of HOTCLOUD, 2009.

[6] P. H. Carsn, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS: A Parallel
File System for Linux Clusters. 2000.

[7] Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical Processing in
Big Data Systems: A CrossIndustry Study of MapReduce Workloads.
In Proc. of VLDB, 2012.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluating
MapReduce Performance Using Workload Suites. In Proc. of MASCOTS,
2011.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. of OSDI, 2004.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In Proc. of ACM SOSP, 2003.

[11] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces
from a production MapReduce cluster. In Proc. of CCGRID, 2010.

[12] S. Krishnan, M. Tatineni, and C. Baru. myHadoop-Hadoop-on-Demand
on Traditional HPC Resources. Technical report, 2011.

[13] Z. Li and H. Shen. Designing a hybrid scale-up/out hadoop architecture
based on performance measurements for high application performance.
In Proc. of ICPP, 2015.

[14] Z. Li and H. Shen. Performance measurement on scale-up and scale-out
hadoop with remote and local file systems. In Proc. of CLOUD, 2016.

[15] Z. Li, H. Shen, W. B. Ligon, and J. Denton. An exploration of de-
signing a hybrid scale-up/out hadoop architecture based on performance
measurements. IEEE Transactions on Parallel and Distributed Systems,
PP(99):1–1, 2016.

[16] Y. Lin and H. Shen. Eafr: An energy-efficient adaptive file replication
system in data-intensive clusters. In Proc. of ICCCN, 2015.

[17] G. Liu, H. Shen, and H. Wang. Computing load aware and long-view
load balancing for cluster storage systems. 2015.

[18] J. Liu and H. Shen. A popularity-aware cost-effective replication scheme
for high data durability in cloud storage. In Proc. of IEEE BigData,
Washington D.C., 2016.

[19] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. Nelson, S. Brandt,
and S. Weil. Ceph as a scalable alternative to the Hadoop Distributed
File System). The USENIX MAGAZINE, 4(35):518–529, 2010.

[20] W. C. Moody, L. B. Ngo, E. Duffy, and A. Apon. Jummp: Job
uninterrupted maneuverable mapreduce platform. In Proc. of Cluster,
2013.

[21] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. Workload characterization
on a production Hadoop cluster: A case study on Taobao. In Proc. of
IISWC, 2012.

[22] A. Sarker, C. Qiu, H. Shen, A. Gil, J. Taiber, M. Chowdhury, J. Martin,
M. Devine, and A. Rindos. An efficient wireless power transfer system
to balance the state of charge of electric vehicles. In Proc. of ICPP.
IEEE, 2016.

[23] H. Shen, L. Yu, L. Chen, and Z. Li. Goodbye to fixed bandwidth
reservation: Job scheduling with elastic bandwidth reservation in clouds.
In Proc. of CloudCom, 2016.

[24] W. Tantisiriroj, S. Patil, G. Gibson, S. W. Son, S. J. Lang, and R. B.
Ross. On the Duality of Data-intensive File System Design: Reconciling
HDFS and PVFS. In Proc. of SC, 2011.

[25] W. Tantisiroj, S. Patil, and G. Gibson. Data intensive file systems for
internet services: A rose by any other name. Technical report cmu-pdl-
08-114, 2008.

[26] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, et al. Bigdatabench: A big data benchmark suite from
internet services. arXiv preprint arXiv:1401.1406, 2014.

[27] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling and
modeling resource usage of virtualized applications. In Proc. of
Middleware, 2008.

[28] L. Yan and H. Shen. TOP: vehicle trajectory based driving speed
optimization strategy for travel time minimization and road congestion
avoidance. In Proc. of MASS, 2016.

[29] S. Yang, W. Ligon, and E. Quarles. Scalable Distributed Directory
Implementation on Orange File System. In Proc. of SNAPI, 2011.

[30] M. Zaharia, D. Borthakur, S. Sen, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. of EuroSys, 2010.

10

